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1. INTRODUCTION

Terrain following systems evolved in the late 19SOs, tifter very

C(e'ctive defenses agailist high-altitude aircraft had developed.

low-alt itudc hig~h-spced flight became the best means for an aircraft

to evade detection and destruction by enemy defenses. .any modern

military aircraft (fighters, bombers, and transports) now have

t- rain fo.lowing systems, The F-ill, B-52, and the C-5A are examples

of these. Future aircraft, such as the B-i, missiles, and possibly

remotely piloted vehicles (RI7Vs) will have terrain following systems.

It is also possible that cormmercial aircraft may use similar techniques

for landing approaches in the future. Thus, the terrain following

problem has become important for many types of aircraft.

1.1 The Basic Terrain Following Problem

'llTe basic terrain following problem is to determine the proper

commands I') the control system in order to achieve a flight path

that minimizes the probability of destruction of the aircraft. The

destruction can result either from enemy defenses or from impact on

thl terrain. Ml~is definition presents a very complex problem that

depends directly on the enemy defenses and on how well a particular

terrain following scheme is actually implemented. The problem is

further complicated by acceleration and flight-path angle constraints

that may be imposed upon thie aircraft. Additionally, some terrain

following systems can be operated either in an automatic mode or

in a manual mode. During the manual mode, the pilot provides

conunand inputs to the control system after viewing a display generl-

fat.ed b), the terrain following system. The inmnense compqlexity of the

1O
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basic problem prevents its direct overall solution; the problem

requires division into subproblem that can be solved with the avail-

able mathematical tools and technology. Accordingly, only a major sub-

problem of the basic problem is treated here and will be defined

precisely after some general background information is discussed.

1.2 Previous Terrain Following Systems

In the literature, a wide variety of major topics concerning

terrain following has been covered. These topics include performance

measures, probability of kill, probability of impact on the terrain,

tisr.lays, lhuan factors, terrain classification, flight test data, sim-

ulation data, turbulence effects, and radar characteristics. The

reader may consult Reference 4 for a more detailed summary and a

bibliography that cover these diverse topics.

The first-generation terrain following systems are basically

aircraft flight-path-angle controllers [3, 4, 16]. These angle con-

trollers compute a desired flight-path angle based on the relative

locations of critical terrain features. Deviations from the desired

flight-path angle create pitch commands to the aircraft flight-

control system.

The second-generation terrain followers control the path of the

vehicle more directly [2, 4, 11, 23]; the pitch commands are generated

to produce specific types of paths. In order to obtain lower paths,

sowe systems use segments of terrain data, rather than only critical

terrain points. I'atb control results in a natural division of the

problem into the path-determination and the tracking subproblems.

luch of the early development was devoted merely to obtaining
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systems thlt perforned in a reasonable fashion. Later, attempts were

Mkle to improv, per formance of the various subsystems. One example

of suhsystem improvement is thc optimal tracker developed by General

Ilectric CpanWy [23, 24, 25]. In another, Creaves [11] optimized

both the tracker and the path-determination scheme, but as two

separate subproblems. To date, the latter has come closest to

optimizing the overall system. There are two major similarities

between the work by Greaves and that reported here: both schemes

are intended as feasible real-time controllers, and both formulate

the path optimization as a quadratic programuing problem with linear

inequility constraints. The primary differences are in the approach

to optimality, the path data processing method, and the implementation

of the tracking system. The various types of systems are discussed

in more detail in Chapter 2, where appropriate terms are defined.

As indicated previously, the basic problem is too complex for

overall optimization with present theory and techniques. The dynamics

of the aircraft are nonlinear and the addition of the many constraints

makes the mathematical problem untractable. The two major contribu-

tions oi this dissertation are the precise definition of a mathematical

optimizattion problem that encompasses a major portion of the terrain

following problem, and the parametric study of the solutions of that

problem with all of its constraints. Each solution of the problem is

a smooth reference path that follows the terrain as closely as possible

and is a path that an aircraft can follow very well. The simplifyini)i
assumpt ons required to make the problem tractable are deemed to be

more consistent with practical limitations than those of previous
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approaches. For example, there is no assumption of constant horizontal

velocity; neither is there an attempt to make the aircraft follow a

path that it cannot reasonably be expected to follow. The set of

allowable controls does not permit discontinuous accelerations that

defy implementation, but provides both acceleration and acceleration-

rate limits.

1.3 The Information Processing Problem

The method of subdivision of the basic problem into subproblems

affects the performance of the resulting terrain following system, as

will be indicated in the following discussion. The scope of the prob-

lem will be first narrowed to a much more manageable extent by four

basic assumptions:

1) A reliable set of discrete terrain data points is available,

2) The motion of the aircraft is restricted to a vertical plane

so that only longitudinal motion is considered,

3) A priori knowledge of enemy defense systems is not available,

and

4) The automatic mode, with no pilot in the control loop, is to

be used.

These asstmptioris, which will be discussed in more detail below, limit

the problem to the following "information processing problem': given

a set of terrain data points, determine the input commands to the longi-

tudinal control system of the aircraft such that the resulting aircraft

path is as low as possible, within the following constraints:

1) The flight path is not lower than a specified minimum-

clearance distance above the terrain points,
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2) Specified normal acceleration limits are not exceeded by the

aircraft, and

3) Flight-path angle, or slope, limits (if specified) are not

oxceeded.

'Thc usual source of terrain information in a system is a forward-

looking radar. Conceivably, other sources, such as satellites and

accurate terrain maps, can be used also. The effects of radar /

"shadowing", which occurs because the radar cannot see the back sides

of hills, are not considered directly in this study. Any terrain-

following system that uses a forward-looking radar suffers from this

saw handicap -- in any case, whatever data are available should be

processed in the best manner.

The term "terrain avoidance" has been applied consistently to

systems that involve lateral motion of the aircraft, to enable the

vehicle to fly around high peaks rather than over them. The term

"terr•ain following" has usually been restricted to longitudinal-

motion systems. Only terrain following is studied here, although

most of the concepts could certainly be extended to terrain-avoidance

systems.

For general usage, it is reasonable to assume that a terrain-

following system should be able to operate effectively without an)y

knowledge of the enemy defenses. This requires a choice of performance

measure that is insensitive to the defensive configuration. The

natural choice for such a performance measure is to require the

vehicle to fly as low as possible as often as possible -- or in other

words, each clearance height sample should be weighted equally.
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Modifications to this procedure are easily possible, especially if

good rationale for weighting some regions ooze !hevily thin others is

know. If some a priori kuawledge of the defense structure is knowm,

,certainly the heavily defended regions could be given higher per-

formnce weighting coefficients. Hoever, these ideas will not be

pursued further in this thesis.

The wuiform global approach to closeness (treating sample points

equally) is at variance with the assumptions made by Greaves [11].

lie assumes that the highest point of the terrain segment being optimized

is the most critical. Frthermore, he does not impose a oin-zero

minimm-clearance distance constraint, although he might easily do so

with his method; apparently, pure vertical translation of his optimal

path would be required to provide a safeiy clearance.

The automatic mode is considered more important for low-altitude

high-speed flight because pilot reaction times can adversely affect

tle system performance. This does not imply that the automatic mode

would be used only for high-speed flight, but high-speed does provide

the Pxost severe test of a terrain-following system.

1.4 iiv Specific Approach

Within the framework of the information processing problem, the

further subdivision of problems for the proposed system can now be

stated:

1) Construct a terrain representation curve,

2) Determine a minizmu-clearance curve,

3) Optimize a path subject to

a) the constraint that the path is above the minimum-

clearance curve,



1 7

b) acceleration constraints, ai

c) flight-path slope constraints, and

4) Determine ccmmand signals to the aircraft control system based

on the optimal flight path.

The major subproblem is the determination of a path for the aircraft

that satisfies all of the constraints and lies as "close" as possible

to the terrain. Since the nonlinear aircraft equations of motion are

too cumbersome for efficient computation, a very simple path model is

chosen into which the specified constraints can be directly incorpor-

ated. The solution of the problem with the simplified model is a

reference flight path that the aircraft can essentially follow. Mhere-

fore, the tracking problem becomes relatively simple.

The minimum-clearance constraint is obviously a safety considera-

tion. A terrain curve is desired, rather than just discrete points,

so that the effects of minimum clearance distance can be investigated

in detail. rbst systems merely translate the terrain curve upward by

the specified reference-clearance distance to obtain a clearance path.

But, if the slopes of the terrain are large, some points of the

resulting curve will be closer to the nearest terrain curve points than

the rcference-clearance distance, as illustrated in Figure 2-1 where

the reference-clearance distance is cmin. The terms used in the

figure are defined in Section 2.1.3, while the clearance effects are

investigated in Chapter 5, along with the fitting of cubic splines

through data points.

The acceleration and flight-path-slope constraints are frequently

imposed for pilot comfort and performance, although they could also be

due to aircraft structural or performance 14nitations.
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1.S Wbthematical Cmplexities of the Optimization Problem

The inclusion of the clearance, slope, and acceleration con-

straints in the mathematical optimization problem creates a very diffi-

cult problem. Due to the clearance and slope constraints, the resulting

optiml control problem becomws one with state variable inequality con-

straints (SVICs). There has been limited success with general optimi-

zation algorithms that handle SVICs. Methods that handle these

constraints directly require a priori assumptions of when and how miny

times the constraints are "active" (satisfied by an equality). The

method of Denham nd Bry.son [10] and that of Hennig (13] are examples

of these. For the terrain-following problem in vhich many contacts

with the constraint boundaries are likely, the iumber and locations

of the contacts are extremely difficult to predict in advance. It

very nearly requires guessing the complete solution in advance.

Jacobson and Lele [15] have attempted to circumvent these

difficulties by converting from state inequality constraints to slack

variables. For the same reason, Martensson [20] converts the state

inequality constraints into control variable constraints, which can be

treated more easily. The slack variable approach has inherent computa-

tional problems, while Martensson's conversion, for this particular

problem, leads to incompatible control constraint equations (there is

no feasible control at times). Other special techniques, such as

decomposition into subarcs (7], have been attempted by other authors,

but they are limited to special types of problems.

The greatest success with SVTCs has been in treating them indirectly

with penalty function methods [5, 19]. This was the first approach

S. . . . ... .. . ... .. .. b
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considered. It was successful, but it required very large computing

times. The details are reviewed in Section 6.1. The second approach

was much more effective. In it the optimization problem is formulated

first as an optimal control problem with differential state equations,

continuous controls, and an integral performance measure. A cubic-

spline trajectory model reduces the problem to a finite dimensional

optimization, without sacrificing any of the essential character of

the aircraft flight path. Then, the state equations are written as

linear difference equations, and the control is a set of discrete

values. These results simplify the computations; however, a still

greater simplification is produced by replacing the integral perfor-

mance measure by a discrete performance measure which is evaluated

by sampling the path at intervals. These procedures %ich discretize

with respect to range result in either a quadratic or linear programming

problem. Both linear and quadratic programming algorithms treat the

inequality constraints directly and offer large savings in computational

time. Furthermore, good linear and quadratic programming algorithms

are readily available [14, 27, 2S].

1.6 Overview

The second chapter defines some terrain-following terminology and

:mwniinri:es the basis of existing types of terrain-following systems.

(liapter 3 contains the formulation of the optimization problem that ir

the essence of the optimal-path following scheme. The usual terrain-

Collowing system does not have all of the terrain da-.a available at

one time; new data is received periodically as the aircraft proceeds

along the terrain. This process leads to a sequence of data frames
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and successive optimizations. The fraudng process and the p•rameters

involved are described and analyzed in Chapter 4. Chapter S contains

an analysis of fitting cubic spline functions through the terrain data

points to obtain a continuous curve. The continuous curve is used

to analyze construction of a minimum-clearance reference path, and

this path is then compared to a translated terrain curve. In Chapter 6,

the solutions of the optimization problems are given in parametric

studies of various framing structures. Analysis of the tracking problem--

that of determining comands to the aircraft flight-control system such

that it will closely follow the optimal path -- is in Chapter 7.

Chapter 8 addresses some of the considerations for real-time onboard

implementation of the optimal-path following scheme. Finally, con-

clusions are drawn and recommendations are made in Chapter 9.



2. TERRAIN FOLLOWING CONCEPTS
w

In the past many attempts have been made to evaluate terrain-

following system rerforance and to establish criteria that are

meaningful for more than one particular system. The determination

of criteria is a very difficult problem considering the differences

that can occur in terrains, in aircraft, in defense systems, and in

the implementation of the various systems. The intent here is not

to discuss past evaluations in great detail, but to give sufficient

background in some of the more general criteria so that the effec-

tiveness of the system proposed here may be judged more readily.

Following some definitions of terminology used in terrain-following

analysis and a brief discussion of performance criteria, some of

the concepts of previous tcrrain following systems are discussed.

2.1 Definitions

The following are definitions of terms that will be used fre-

quently throughout this thesis.

2.1.1 Acceleration Limits. The acceleration limits for terrain

following usually are specified in incremental G's (lG - 32.17

ft/sec'). Positive G's are measured upward and level flight has a

zero G reference value. The incremental G's should not be confused

with the normal load factor, which has a one G reference value

for level flight.

2.1.2 Clearance Curve. The terms clearance curve and clearance

altitude refer to a curve and its points that are a specified

"minimum-clearance" distance, cmin' from the terrain points. The

curve represents a lower bound for the aircraft flight path. The

11
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clearance curve is distinct from the desired reference curve or

reference path specified in other terrain following systm. That

reference curve does not represent a lower bound on the aircraft

flight path, but is at a desired clearance distance, Craf above the

terrain. Swme excursions of the aircraft flight path below the

reference curve can be expected. Typically, points on the reference

curves have been measured vertically above the terrain points. If

the clearance curve is measured in this rmner, it is simply a

vertical translation of the terrain. Such a curve will be referred

to as the vertical-clearance curve. Obviously, if the terrain slope

is large, the clearance distance to the nearest point on the terrain

curve will be less than CnI.n as indicated in Figure 2-1. The

clnt slanti-clearance
curve

curve
c slantv C min

terrain
curve

Figure 2-1 Clearance Curves
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clearance to the nearest point on the terrain curve will be termed

the "slant" clearance distance, Cslant' and is measured perpendicular

to the terrain curve at any point. For the sake of analysis, con-

tinuous curves will be fitted through terrain and clearance path

points. This fitting process, as well as the computation of a slant-

Sclearance path with c cmin, is described in detail in
cslant m

Chapter S. Also, the differences in the two types of clearance

paths are analyzed there. The general term "clearance curve" will

be used to refer to the curve regardless of how the clearance dis-

tance is measured.

2.1.3 Ideal Path. A path that is frequently used as an evaluation

tool in terrain following is the ideal path. Unfortunately, this path

does not have a unique definition in the literature. It has been

determined in different ways by different authors, but the common

requirement for this path is that the performance constraints are

satisfied. The constraints are on either vertical or normal

acceleration, on flight-path slopes, and on minijmu-clearance dis-

tance. ligure 2-2 shows a typical ideal path.

pull-pull-ideal path
up pust'- tp push-over10c vc acarc negativepul

cdear.'nce ar / )parc arUP clearance

terrain clearance

curve curve

Figure 2-2 Ideal Path
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2.1.4 Terrain Roughness. Various measures of terrain rougi s

have been proposed. One simple measure [4, page 371 has been the amn

of the terrain point heights, where each sample point height, Tn, is

measured from the zero reference level -- that of the lowest terrain

point in the set.

1 N (2-1)
TWM nE Tn

This measure conveys very limited information about the terrain; a

more descriptive measure of roughness is the standard deviation of the

terrain segment based on N sample points from the terrain.
/•N 2T.N

(1 -T-W ) (2-2)

Although the decision is somewhat arbitrary the following ranges are

adopted here to define roughness as a function of oT:

smooth -- 0 to 200 ft.

Moderate -- 200 to 500 ft.

Rough -- over 5no ft.

These ranges are in general agreement with current terrain analyses.

2.1.5 Path Curvature and Kink. The term "curvature", in this

thesis, is defined as the second derivative of the path height

with respect to horizontal range. This definition differs from

that for the usual mathematic curvature, which is identically equal

to the last term of term of Eq. (2-3). Here the curvature

of a flight path is related to the aircraft speed along the path

and to the accelcrition normal to the path, by the approximation

A~ 'N 3 aN
-- k--k secy Y (2-3)
dR7 7.
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where the flight-path angle is y. The derivation of this equation and

the following one are in Appendix C. The approximation is exact only

when the flight path is horizontal, but it is fairly accurate for

mall flight-path angles. The curvature is also related to the

instantaneous radius of curvature, rc, and the flight-path angle by

the equation

rc u sec3Y. (2-4)

The derivative of curvature with respect to range is defined as

the "kink", p. Kink is analagous to jerk, j (the rate of change of

acceleration in the time domain). Kink is proportional to the jerk

and inversely proportional to the cube of the velocity.

padk A ~ (2-5)

2.1.6 Ride Hardness. The hardness of the ride is related to the

acceleration limits imposed upon the aircraft. The term is usually

qualitative rather than quantitative. The larger the span of

acceleration allowed by the limits, the "harder" is the ride. To be

more specific, in this thesis, precise values for the acceleration

limits are assigned for the various rides. The first set of

incremental-G limits is that given for the F-ill, Mark II System [31,

while the second set is for a hypothetical missile:

Set I Set 2

Hard Ride -1.0 to +2.0 G's -5.0 to +15.0 G's

Medium Ride -0.5 to +2.0

Soft Ride -0.25 to ,2.0 -1.0 to + 3.0
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The negative limits are generally more restrictive because of the

pilot or because of sme vehicle configuration. The pilot is

physiologically msch more adaptable to positive G's then to negative

G's, %ile some jet engine inlet configurations are unsuited 'to the

airflow patters resulting from negative G's.

2.2 Performace Criteria and Parameters

Sme of the criteria frequently used for improving and evaluating

terrain following performance, as indicated in the Terrain Following

Criteria Handbook [4] and by Brostrom [6] have been

1) Minimization of ME clearance altitude deviation from a

reference clearance altitude,

2) Attainment of level flight over dominant peaks,

3) Minimization of RMS normal acceleration,

4) Reduction of the maximan clearance altitude deviation

from the reference clearance curve,

5) Reduction of the minima. and maxima vertical accelera-

tions and vertical velocities, and

6) Subjective evaluations of flight path time histories.

Most of these are concerned with keeping the flight path as low as

possiblc, but items 3) and S) are concerned with reduction of ride

hardness and maximization of flight range. Jeffrie [161 recommends

the comparison of the flight path with the ideal path rather than

the clearance curve, as in item 4), above. He shows statistical

comparisons that indicate clearance deviations become much less

sensitive to the particular terrain when the ideal path is used as a

* 4reference rather than the clearance curve. This is not surprising,
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for the ideal path acts as a low-pass filter in filtering out the high

terrain frequency conponents, as shoc,. by Weir [31].

The parameters that affect the performance of all terrain follow-

ing systems are

a) Aircraft forward velocity,

b) Aircraft normal acceleration limits,

c) Flight-path angle,

d) Minimum-clearance distance,

e) Terrain roughness and frequency content, and

f) Defensive threat situation.

A good terrain following system should allow for some adjustment in

all of the above parameters, or it will be too specialized.

2.3 Terrain-Following Command Generation

There has been no standard for classifying the various systems

that have been developed, but one approach is to classify them

either as flight-path-angle controllers or as path controllers.

Farly systems were path-angle controllers, where the path itself was

only indirectly affected by the direct control of the aircraft

attitude. Later efforts developed controllers that analyzed paths

directly before determining the proper attitude the vehicle should

have to produce a good approximation of the desired path.
2...1 Fi'ht-Path-ngle Controllers. The flight-path-angle control-

lers have been systems that generate cammands based on critical

features of the terrain. The commands are based either on the

relative range or the relative angular position of the critical

feature [3, 4, 16], and the general configuration is indicated in

block diagram of Figure 2-3.
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Figure 2-3 Flight-Path-Angle Controller Schematic

The first type of controller to be discussed below is the sim-

plest since it does not require a forward-looking radar. This type

uses only a radar altimeter terrnin sensor. The two remaining

types of angle-controllers are designed for forwrd-looking radar

systems.

2.3.1.1 Relativ-: Altitude/Altitude-Rate Systems. Typical missile

terrain-following systems use terrain data which consist only of the

vehicle altitude relative to the terrain, he, and the time rate of

change of that relative altitude, 6c" This type of system has very

little predictive capability, since the only terrain data used is

for the terrain immediately below the aircraft. A block diagram of

this system is shown in Figure 2-4. The difference between the

relative altitude, he, and the desired reference value represents

an error in current position. The altitude rate data provide a

measure of the relative angular difference between the vehicle

flight path and the local terrain slope. There are a wide variety
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* cref-h c C+ c controlU aircraft

re hc fi • c onitroller "Y syast'rem dyamcs

Figure 2-4 Relative Altitude/Altitude-Rate System

of ways of combining these two signals in the controller to produce

a ccu•,wded flight path angle. Typically an equation such as

fEq. (2-6) is used.

Yc (hc - cref) (2-6)

Frequently, the negative a and B gains are fixed and limiters bound

both the flight-path angle and surface deflection cammands. This

type of system has found application in missiles where space and

weight limitations are severe and vehicle maneuverability is high.

2.3.1.2 Scanned-Range and Template Systems. In the range-type

systems, the response to a terrain feature depends upon its relative

range from the aircraft. Conmputational devices, such as the

"template" illustrated in Figure 2-5, are used to compute command

signals. The template is not a physical device, but is used only

for mathematical computation. The template is fixed with respect
to the aircraft axes and is contained entirely within a specified

angular sector (81 + B2) ahead of the aircraft. The template is

------ -
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tol~ I i

S~points

Figure 2-5 Template System

terminated at a specified maximum range, R., and is truncated by a

ramp at the far lower corner. The actual dimlnsions of the template

must be tailored for the particular radar and aircraft systems. The

shape of the template is designed to separate terrain points into

two groups: those that require pull-up comnands to provide adequate

clearance, and those that still can be cleared when push-ovez

cuimads are given. First, the set of ranges, Rt, corresponding to

terrain points inside the template is considered for the pull-up

computation.

S-s =!x ca (R 1i-Ro)1 + N(hc - cref) (2-7)

where e and *H are negative constant coefficients, hc is the

current clearance height above the terrain, and cref is the specified

reference clearance height. The maximization in Eq. (2-7) indicates

that the critical point is the terrain point in the template nearest

to the aircraft. The first term of the equation provides for

= _ _ _ __ _ _ _
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clearance over the critical point, while the second term compensates

for current altitude deviations from the reference clearance height.

When no terrain points lie inside the template, but there are good

radar returns from points outside the template, a pitch-down command

is created from an equation similar to Eq. (2-7). However, the

J selection of the most critical point outside the template is more

complex and may differ for different systems.

Both the template system and the relative-angle system, described

below, use a "b•ck-uP" computation for times when good radar returns

are not available from the forward-looking radar, such as when cresting

a peak or when flying over water. The back-up system is usially an h-

controller that uses a commuad of the form in Eq. (Z-6).

2.3.1.3 Relative-Angle Systems. The relative-angle systems have

had greater usage than the relative-range systems. The F-111, C-S,

F-4, and B-52 terrain- following systems are all relative-angle systems.

These systems react to terrain points that lie in the range interval

[RminRs], as illustrated in Figure 2-6.

Scref / C

* /

rFigure 2-6 Relative-Angle System
R R

1/



22

The most critical terrain point in the interval is determined from

Eq. (2-8).

, = mx( ) (2-()

i

where the index i refers to points in the range interval [%Ln'

R=x]. The critical point, at (%, 02), determines the commded

flight-path angle:

y (a + a+ -Fe ) (2-9)

where a is a constant coefficient, e is the aircraft pitch angle, and

the Fs shaping function is a function of the range %, the aircraft

velocity, and the aircraft acceleration limits. The combinatiom of

a and Fs is chosen to provide the proper "amount" of prediction for

a particular system. The amount of prediction required varies

inversely with the range and the maneuverability of the aircraft.

2.3.2 Path Controllers. Three types of path controllers are dis-

cussed below. The first ws developed by Cornell Laboratories

(Calspan) [2,41, and is called the ADIAT system. The second is an

"optimal" tracker system developed by General Electric Cnpany for

the Air Force Flight Dynamics Laboratory [23, 24, 251. The last is

one proposed by Greaves f11], which uses both an "optimun" path

determination and an "optinumi' tracker system.

2.3.2.1 ADLAT System. The Advanced Low Altitude Techniques (ADLAT)

system [21 is one of the earliest path controllers. It utilizes

tw parabolic path segments as shown in Figure 2-7.

ip
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Figure 2-7 ADLAT System Path

The segments are pieced together so that they are tangent at the

transition point. The first segment is tangent to the aircraft

flight path and the second is horizontal at the "dominant" terrain

obstacle. Each parabola represents a constant acceleration arc.

The ratio of the accelerations on the two arcs is the same as the

ratio of the two acceleration limits. It is possible for the two

arc geometry to degenerate into a geometry which involves only a

single push-over arc. If the aircraft were fairly high with respect

to the obstacle, the order of the arcs might be reversed from that

shown in the figure. However, if the system is operating properly,

it should never allow the aircraft to get into a position where the

limit areas that are cross-hatched in Figure 2-7 overlap.

* Figure 2-8 illustrates the controller which is similar to an

Sangle controller except the commanded angle is extracted from a

stored set of sampled flight-path angles computed from the ADLAT
parabolic path segments. The sampled set is updated periodically.
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Figure 2-8 ADLAT Path Controller

Compensation is also added to the conmmnd signal to account for lags

in the overall aircraft control system.

2.3.2.2 Optimal Tracker System. The system developed by General

Electric (23, 24, 25] uses a stored segment of terrain data. Sane

preliminary processing of the terrain data is done to produce a

clearance curve as indicated in Figure 2-9. The result is a path

lying somewhere between a vertical-clearance curve and an ideal

path. The path is translated upward from the terrain curve by the

distance cmin, but in addition, parabolic segments, representing

maximum pushover arcs, are inserted in front of the peaks by a

backward sweep of the data in a special processor. In theory one

would like to have the actual ideal path produced, (as vill be

described next in the Greaves approach), but this involves a

much more complex piecing of arcs, as indicated in Figure 2-2.

The processed clearance path is used in the General Elec-tric system

as a desired tracking signal for an optimal tracker. The tracker
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parabolic ,

processed clearance path
Sk_ vertical-clearance curve

Figure 2-9 Preprocessed Clearance Path

is really only optimal in a limited sense. The aircraft motion is

modeled as a simple third-order lihear system. Optimal feedback

gains for the usual quadratic cost tracking problem are found by

the methods cf optimal control using the Riccati equation. Appro-

priate correlation between the boundary conditions and cost coef-

ficients produce constant gains for the third order model. The

prediction signal required for the solution of the optimal tracking

problem is obtained by a fast-time backward integration of the

adjoint equations. This signal and the constant-gain feedback

signals provide the input signal to the aircraft flight-control

system, as indicated in the block diagram of Figure 2-10. The

overall system, however, is only optimal to the extent that the

preprocessed clearance path coincides with the ideal path, and

insofar as the linear third-order system closely approximates the

non: inear aircraft system.
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clearance deird gasttion prdcto

Figure 2-10 titimal Tracker Systea

2.3.2.3 Opiu Processor-Tracker System. The system developed by

Greaves [11] has both a path-detemntion optimizer and an optimal

tracker. The path processor is a nonlinear digital filter that

pefisa series of operations on sets of discrete-range path

points. The filter starts with the set of terrain points and pro-

duces a set of path points that satisfy specified clearance and

acceleration constraints while remaining "close" to the terrain

points.

A series of iterations is involved; for each iteration, an

operator "optimally' enforces a particular type of constraint at

each point of violation in the current path point set. After all

violations of onetype of constraint are eliminated, the next type

of constraint is considered. The sequence of constraints is ordered

so that no new violation of previously satisfied constraints occur.

The inaut set of path points for each operator, cieis designated

{hi}, and the output set is (yrm, where i is the horizontal range

index.
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{yi) O {hi (2-11)

If IV indicates the set of points at which violation of the jth

type of constraint occur, then the 0 operator solves a "'local"

optimization problem at the highest point, hn, in the set Ij. The

optimization problem is to minimize

n+l 1 2
Jn a (yi"h 1 ÷ 7 y2) (2-10)

i-n-i

subject to the jth type of constraint and a clearance constraint.

Thus, the 0 operator eliminates a type j constraint violation at a
j

specific range point by moving path points upward to maintain the

clearance constraint. The operator is used repetitively on the

path point set, but it only changes points in the three-point

"neighborhood" of the violation at any one step. The details for

the 01 operator are described below.

The input set used to begin the procedure is the terrain

heights, Ti, plus any specified minimun clearance, cmin.

{hi}O = {Ti + Snin) (2-12)

Greaves works with zero minimum clearance, but it is trivial to

extend the procedure to non-zero values. The clearance constraint

that the final set of points must satisfy is

yi -Ti + cmi (2-13)

and is maintained during each iteration step by the "non-lowering"

requirement:

yi hi (2-14)

_____ I
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The first operator, 01, enforces the minim=u-acceleration

constraint:

Iq

where T is the time interval required to traverse the horizontal

interval between terrain points (with the horizontal speed assmed

to be constant). This constraint essentially considers the

acceleration at the central point 'In" to be equal to the constant

acceleration on a parabolic path through three points.

an -2 (h ,- 2h + h~ (2-16)

The 01 operator solves a local optimization problem at the highest

point, hn, in YI. The optimization problem is to minimize Jn of

Fq. (2-10) subject to the constraints of Eqs. (2-14) and (2-15).

This operation is repeated on the path set until T1 is empty. Then

the muximua-acceleration constrain* operator is used to minimize JJn
subject to Eq. (2-14) and a maximum-acceleration limit. Slop, amd

jerk constraint operators are also considered by Greaves, but for

simplicity they are not discussed here.

The mathemtical results of the optimization problem for opera-

tor 01 can be interpreted geometrically, as illustrated in Figure

2-11. A parabola that has a curvature corresponding to the minimum-

acceleration limit is used as a violation indicator. The original

points are the h. mid the processed points are the yi. In Case 1,

both adjacent points lie below (or on) the constraint parabola

when the vertex of the parabola is located at the point of violation.

The minimum J. of Eq. (2-16) occurs when the two adjacent points are

I
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Figure 2-11 Minimun-Acceleration Constraint Enforcmeot

raised to equal levels on the parabola. If one of the adjacent

points lies above the initial parabola location, as in Case 2, the

parabola is repositioned to pass through the highest adjacent point,

as well as the violation point. The solution is then obtained when

the remaining point is raised to the parabola.

The complete iterative process is illustrated in Figure 2-12.

The original terrain data points are shown, followed by the sets of

path points that result from the enforcement of each type of acceler-

ation constraint. The points are indicated by numbers, with the

letter subscripts indicating the order of the step which resulted in

its final placement. For example, step "a" is the first step and

results in the adjustment of points 6 and 8, while step "b"

repositions only point 5. The curves shown are orientation refer-

ences only; the filtering process works only with the discrete points.

Greaves acdnits that it is difficult to determine the overall

sense of optimality in his path processor, since a lengthly series

of local optimization problems are performed. The sequence of

I4
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Figure 2-12 Digital Filtering Process
optimizations is equivalent to minimizing a "global" pertoimnce

measure of the form

OEAI N 12

Z- 3 (. ient1 1 o

1 1m ( -"hi) ÷ 1 (y. "-h.) ] (2-17)

Unfortunately the. weighting coefficients, wi' are not Juio• prior
to the optimization, and they depend upon the particular terrain

data used.

Although Greaves' procedure is closer than any predecessors

to the overall objective of creating the best path for the vehicle

to follow, it still suffers conceptually from two disadvantages:
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1) the sense of overall optimality is obscure, and 2) because of the

simplified (three point) treatment of the acceleration constraints,

a smooth path through the final data points may not satisfy the norma

acceleration constraints between sample points. This latter assertion

is illustrated in Figure 2-13, where acceleration can be related

directly to the path curvature. The data points shoa are a subset

transition maximum acceleration
path constraint at

I point 10
9c\ -X1

minimum acceleration

'. f ) constraint at
point 11

Figure 2-13 Digitally Filtered Data

of those from the final result in Figure 2-12. The points satisfy

the acceleration constraints when considered three at a time; however,

if a smooth curve is fitted through all four points, there must be

some transition from maximum curvature to minimum curvature. But

that type of transition path must violate the corresponding curvature

limits somewhere between points 10 and 11 in the figure.

The optimal tracker system for the digitally filtered path is

similar to the General Electric tracking system, even though the

path processors are considerably different in the two systems. The

system diagram is basically the same as that shown in Figure 2-10

for the General Electric system. Greaves' system does use a

/
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fourth-order linear system model for the tracker, rather than a

third-order model. The fourth-order model is a better approximation

for a nonlinear aircraft system, but nevertheless, the corresponding

optimal tracker system is still only optimal in an approximate

sense, because it uses a linear model.

The optimal-spline-path following system described in the follow-

ing chapters attempts a simpler, more practical coupling of the path

determination and tracking problems. The computed paths will be

smoother than the processed paths of the system described above

and have a more practical curvature profile.



3. MODEL AND OPTIMIZATION PROBLEM FORM4ULATIONS

This chapter formulates an optimization problem that incorporates

all of the essential ingredients for terrain following in a very simple

way. The first step is to construct a simple trajectory model for the

aircraft motion. This model will be used in an optimal control problem

that strives to keep the aircraft as "close" to the terrain as possible

without violating clearance, acceleration and slope constraints. Ini-

tially, the problem is considered in the most natural space, the space

of continuous functions. Then, to provide computational simplicity,

the problem is discretized. The discretization is accomplished using

splines, which retain the essential characteristics of continuous

functions even though they are defined by discrete values. This proce-

dure maintains a close relationship between the mathematical problem

,and the problem of controlling aircraft motion. After the discrete

equatios of motion are developed, the performance measure is dis-

cretized also, by sampling. The resulting optimal control problem

is either a quadratic or linear programming problem. The quadratic

programming problem can be solved by algorithms that treat it directly,

or it can be converted into the linear "Complementary Problem" prior

to the application of an algorithm. Any of the programming problems

can be solved much more rapidly than the original optimal control

problem.

3.1 The Trajectory Model

The trajectory model that is used here is a triple integrator

system defined in the range domain, rather than in the time domain.

The range domain is ideal for terrain following because that is the

33
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natural domain of the terrain. In the range domin, one does not

need to consider the fluctuations in the time-rate of motion over the

terrain due to aircraft velocity changes. The trajectory equations

are

h s (3-1)

s'tA k (3-2)

k. A dk (3-3)

for each range R in the interval r- [R,RN], where h is the height

on the path, s is the slope, k is the curvature, and p is the "kink".

The variables h, s, and k are continuous, while p is piecewise con-

tinuous. The curvature is analgous to acceleration and the kink is

analagous to jerk (the derivative of acceleration with respect to

time). To make the model paths correspond well to aircraft trajec-

tories, limits on both the curvature and the kink are considered in

the following problems.

.3.2 The Optijmal Control Problem

The trajectory model will be incorporated into the optimal

control problem. To solve the dilema cf how to define closeness to

the terrain, a general performance measure is studied. It is con-

structed in terms of the excess clearance variable

e = h - c (3-4)

where c is the height of the minimum-clearance curve. The performance

function is defined over the range interval r.

RN0 2 Mmax(e) (3-S)
R 0 r
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The choice of coefficients Q, L, and M determine whether this perfor-

mace measure is quadratic (0-O), linear (Q - MO), min-max (Q - L-0),

or a combination of these.

The optimal control problem is to determine the curvature function

k that minimizes J subject to the differential constraints of Eqs.

(3-1) to (3-3) with specified initial conditions ho, So, kO, and subject

to the following inequality constraints, for all Rer

e > 0 (3-6)

"smin f 'sSmax (3-7)

k cm k < kma (3-8)

Pmin P- I Pmax (3-9)

'The limits on the curvature arg determined from the normal accel-

eration limits and aircraft speed by the approximation of Eq. (2-3)

ann

k lim(3-10)klim -T--:7 -0
nom

This approximation is accurate only as long as the path slope is

small. However, the approximation is good because the limits tend

to be encountered at the tops of peaks and the bottoms of valleys

where the flight path is nearly horizontal. The kink limits are

related to jerk limits, which usually are not specified for an air-

craft. However, jerk affects the ride comfort for a pilot and the

performance of the tracking system that attempts to follow the

reference path. Therefore, bounds on the jerk, or kink, are desirable

and are discussed further in Chapter 4.

I _________________ __________
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3.3 Discrete Equations of Motion

TMw integration of differential equations on a digital computer

is a tim consuming process. Also, the search of function space for

an optimal control can be very slow compared to discrete parmeter

optimization. Therefore, the use of discrete range equations of motion

and a discrete range control set greatly simplifies the optimal

computations for this problem.

Spline curves are very useful in fitting smooth curves through

data points [11. The cubic spline is composed of cubic polynomial

segments pieced together to provide continuous first and second deriva-

tives at the junctions. The path model is to be represented by a

cubic spline. Thus, the path slope is a quadratic spline, the curva-

ture is a linear spline, and the kink is a piecewise constant function.

The curvature is to be considered the control variable and is illus-

trated in Figure 3-1. A set of range values, Ri, is arbitrarily chosen

for the spline '"nots" (segment junctions). The interval between knots

need not be equal, although it is often convenient to use uniform

spacing.

k3

R 0

Figure 3-1 Curvature Spline

_____________________ ___________________________
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The ki curvature values at the knots, along with the Ri, completely

specify the curvature function on the interval r. Furthermore, the

kink can also be specified in terms of the knot values and the interval

lengths, ai " Ri " Ri-1i

k k
p 0 i+l - for Rc(Ri,Ri

Obviously, the kink is equal to the slope of each straight line seg-

ment in Figure 3-1. With the addition of initial values ho and soo

the path height and slope can be written as difference equations that

incorporate the spline continuity requirements.

si si A i(ki + ki.l) (3-12)

hi . hi. + Si a~ + i2(ki + 2ki.)(-3

h.-h. i_ +1 i (3..13)

The corresponding discrete kink equation is

kiki-k1
Pi A •(3-14)

Note that each of these last three equations defines an affine

function of the set of ki curvature values. If the equations are a

applied recursively, each of the values hi, si, and pi can be written
in terms of thle initial conditions and the ki values, for i-1, 2, ... ,

N. The vector-matrix form is

h = Ek + f (3-15)

Sk + b (3-16)

) = Pk + d (3-17)

4

4
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where h, s, k, p, f, b, and d are N-dimensional vectors and E, S, and

P are NxN matrices that have a triangular form. The elements of E,

S, P, f, b, and d are computed recursively from the interval lengths

Ai and the initial conditions ho, So, and kO. 11w equations for these

elements are developed in Appendix A. It is possible to sample the

variables at points other than the knots, but this complication will

not be considered here. The excess-clearance sample vector can be

written

e- h-c -Ek+f-c (3-18)

where c is an N-vector of the clearance curve sample values. The

inequality constraints of Eqs. (3-8), (3-6), (3-7), and (3-9) can be

written in a single inequality

I mkrax
1 Lukin-,k

E f-c

S k _ USmax-b

-S b-usmin

_i Ld-u13~in (3-19)
L P UPmax-d]

where I is the WXN identity matrix and u is an N-vector of unit

elements. Eq. (3-19) enforces the constraints only at the N knots,

but this still implies satisfaction of the limits on curvature and

kink over the entire interval r, as can be observed from Figure 3-1.

k1wevcr, the clearance and slope constraints are not necessarily

satisfied over the intervals between knots. Definite bounds on the

I ______-__
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amount of constraint violation can be computed; equations for these

bounds are developed in Appendix H. The violations will normally

be quite small.

3.4 Discre-e Performance Measure

Invariably, in evaluating terrain following performance, inves-

tigators resort to sampling the trajectories to evaluate the system,

Thus, it is not unnatural to use a discrete range performance measure,

especially when using discrete range equations of motion. The use of

the discrete measure also reduces the computation required. The dis-

crete performance measure is a sampled version of Eq. (3-5):

I ~ ~N 1 2 Max32)
J r [T ten +Lnel] + M m -20)

nal n

An equivalent vector-matrix measure is obtained using Eq. (3-18)

for e

J - L' k + .k' Qk + M max {Ek} (3-21)
component

where L is an N-vector computed from the Qn, Ln, E, f and he; Q is

a symmetric NxN matrix computed from the Qn and E.

In the early stages of this study, penalty function approaches

were tried to enforce the clearance constraint. This involved the
2

addition to Eq. (3-20) of a term of the form Pnen , which was

added only for en<0. This approach resulted in a "soft" constraint

"that allow some violations of the clearance constraint. Although the

violations were reasonably small, it was not possible to determine

* a priori a bound on the violations. When it became apparent that the
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discrete formulation resulted in a quadratic programming problem, the

clearance constraints could be treated directly and the penalty

function approach was abandoned.

3.5 Qadratic Programming Problem

The quadratic programming problem follows directly from the

discretized equations (3-19) and (3-21), with a scalar variable 'W,

introduced to treat the min-max term. The problem is to determine

the (N+l) dimensional K vector

K _[k] (3-22)

that minimizes

J - L'k . l.k'Qk MnJ L~ Ik+Mm

S[L'M]K-~.K' K (3-23)

subject to

C' K < D (3-24)

where the C and D are formed from the matrices of Eq. (3-19), plus

appropriate coefficients for m if the min-max term of Eq. (3-23) is

used (M#O). The additional constraint set that is added to Eq.

(3-19) to produce Eq. (3-24) is an upper bound on the excess

clearance at each of the knots:

e < u m (3-25)

or

Fk - n < f-c (3-26)

where u is an N-vector of unit elements. Any of the constraints

I
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that are not needed for a particular aircraft or mission can be elimin-

ated from the matrices to reduce the problem dimension.

It should be noted that the above problem will be a linear program-

ming problem when the quadratic performance coefficients, Qn, are set

to zero. Many algorithms are available to solve the linear prograimming

problem [14). The above form of the quadratic programming problem can

be solved by two different approaches: there are algorithms that treat

the above form directly [29], or the Lemke approach [26] is to convert

the quadratic problem into a higher-dimensional linear programing

problem, called the "Complementary Problem." If the min-max term is

not used, so that the quadratic coefficient matrix Q is positive

definite, Shankland's algorithm [29] can be used to solve the quad-

ratic problem directly. The Complementary Problem has special

structure that is handled readily by special linear programming algori-

thms, such as Ravindran's (26]. The algorithms are discussed in more

detail in Chapter 6.

3.5 The Complementary Problem

The basic formulation from which the Lemke development starts

is a slightly different form of the quadratic programming problem.

It is converted into a linear programming problem by the use of

sla-.k variables and the Kuhn-Tucker conditions of optimality [8].

The particular quadratic problem is to minimize

L'x + QX (3-27)

subject to

Gx >H (3-28)

x > 0 (3-29)

--- a.
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Eq. (3-28) is converted from an inequality constraint to am equality

by the introduction of a I"V slack variable vector, which is also

constrained to have non-negative componets.

u- Gx - H (3-30)

> 0 (3-31)

When the Kuhn-Tucker conditions (8, pp 54-S6 ] are applied, the result

is a system of linear equations with some undetermined multipliers

v and y (these are frequently called the dual variables), plus non-

negativity constraints on all the variables, and an additional ortho-

gonality requirement:

[y]= • GoY]xJ . ] (3-32)

u, v, x, y 1 0 (3-33)

v' x + u' y = 0 (3-34)

Rq. (3-32) can be written in. a more concise form by grouping the

variables into two vectors:

S(3-35)

z A (3-36)

0- (3-37)

q LL [. (3-38)

Now we consider the final formulation.

I-
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The Complementary Problem is to determine the unique w and z

voctors that satisfy Eqs. (3-39), (3-40), and (3-41).

w Rz ÷q (3-39)

wz > - 0 (3-40)

w' z " 0 (3-41)

Sq. (3-39) can also be written in the linear programming form:

The constraints of Eqs. (3-40) and (3-41) make it a special linear

progrimJing problem in which either each component of z or the

corresponding component of w must be zero. Ravindran used this special

property for a modified '"evised-Simplex" algorithm to solve this com-

plementary problem. The non-negativity requirements involve a

biasing of cach of the curvaturc values for the terrain following

problem.

xi - k-kin for i-l, 2, ... , N (3-43)

Ihen the min-max variable is used, it does not require a bias, as

it is already positive.

The Ravidran algorithm can solve either the linear or quadratic

programming problem. This flexibility makes it useful for testing

the different performance criteria; thus, it is the primary algorithm

* used in the parametric studies of OCapter 6.



4. FRAMING FOR DATA PROCESSING

It is inpractical to solve a single optimization problem for the

entire flight of an aircraft. The great rauber of samples that would

be required would produce an optimization problem of extremly high

dimnsion. Furthermore, all of the required terrain data may not be

available at the beginning of the flight. The method for handling

these problems is a framing procedure. Frames of terrain data are

considered serially as the aircraft advances over the terrain, and

an ideal path is produced for each frame by solving an optimiza-

tion problem of the type considered in Chapter 3. The details of

the framing procedure are described in the following sections. To

reduce computational requirements, it is desirable to use the minimum

amoumt of data that will still produce good performance. To estimate

the required amount of data and other framing parameters, the idea

of a "characteristic maneuver" is introduced.

4.1 The Characteristic anuetver

The unpredictability of many terrains makes the determination

of an adequate frame length difficult. The characteristic maneuver is

developed here for estimating this frame length in a fairly simple

manner. A "maximum-expected-obstacle height", H, is specified, and

then the minimum range interval required to clear the obstacle and

return to level flight is computed. Any curvature and slope constraints

imposed on the flight path must be considered in the computation. For

simplicity, only the curvature limits will be considered here because

slope constraints are frequently not imposed. The geometry of the

characteristic maneuver is illustrated in Figure 4-1, where the

symmetric path and curvature profiles are shown.

44
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h

i • lm.m

C I C
Fc Ic

k

Figure 4-1 Characteristic Maneuver

The paramters of the maneuver are Ac, Fc' nI,, , andm.

11e curvature limits, kmax and kmin, are computed from normal

acceleration limits and aircraft speed. Since negative acceleration

is usually limited to a smaller magnitude than the positive accelera-

tion, the length of the pushover arc, ncAc, is longer than the pullup

arc length, Ac, while the transition arcs also have a length, Ac.

Note that the positive and negative areas under the curvature profile

in the figure must be equal for the aircraft to return to level

flight. In the computations, the value of nc will be considered a

real number rather than an integer. The equations for nc, acs and

Fc are developed by piecewise integration in Appendix R.

S
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A / 24H

4c - % cs 
(4-1)

k= .
F (S-4 &_) (4-2)

kmax (43n c "0 - ( 4 ÷ 1 ( 4 -3

The parameter Ac, called the characteristic interval, represents

the maximum size control interval that can be used while performing

the maeuver in the minimam frame length, PC. If a A is selected

that is greater than Ac the pullup maneuver will cause the path to

rise higher than H befere level flight can be attained, or level flight

can be achieved only at a range greater than Fc/2. Values of A smaller

than Ac can be used to perform a similar maneuver, but intermediate

control values between kmin and kmax may be required at some points.

To be certain that the characteristic maneuver can be performed within

a frame length that is an integral multiple of the control interval A,

one can use the following equations:

F = A (6+n) (4-4)

where the integer "n" satisfies

n > n c (4-5)

The characteristic maneuver analysis yields a good, simple estimate

of frame length. tHowever, it is based on the clearance of a single

obstacle, and there may be times when multiple obstacles of real

terrains may degrade the performance. There are other framing
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aspects which also affect the performance. These will be discussed

in the following sections.

4.2 Frame Advance

The frame advance process is illustrated in Figure 4-2. At one

•Alvance -I• Interval
-_ Frame 2nd Fr ame OnI

S1st Frame

Interval

R •Range

Figure 4-2 Data Frame Overlap

extreme, there is no overlap of frames; the second frame begins where

the first ended, and the frame advance is equal to the fr length.

This reduces the number of optimizations to a minimun, but it is

largely an open loop system as far as terrain and clearance curve

information is concerned. There is no adjustment to the data during

the full frame interval. If the terrain data were perfect, non-over-

lapping frames would work well, but the present state of the art in

terrain-following radars is such that good returns are not always

available. Returns are also subject to the phenomenon called "radar

shadowing", in which part of the terrain blocks the radar energy from

reaching portions of the terrain at greater ranges. From a practical

viewpoint, it is desirable to update portions of the terrain data

as new data become available, before a full data frame is completely
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traversed by the aircraft. To allow maximm feedback of terrain

inforition the frame advance distance should approach zero, but the

frins anst advance at a rate which is at least as great as the air-

craft speed. This establishes a minim= frame advance rate: however,

the frame computational time must also be known to compute the frame

advance distance. It is possible to advance the frames more rapidly

than the aircraft speed to allow soe idle time between successive

frame comutations. Since the computation time for different frames

will usually vary, some idle time should nominally be allowed.

4.3 Frame Lenh

Although the required frame length can be estimated from the

characteristic maneuver described previously, there are a few other

frame-length aspects that should be mentioned. The characteristic

frame length, Fc, is the estimate of minimum frame length, but there

is also an upper bound on the frame length that is dictated by the

source of terrain data. The amount of data to be optimized in a single

frame must lie somewhere between these two extremes. To reduce the

ccIputation required, the frame length should be chosen near the

claracteristic value. Furthermore, the data at the far end of the frame

may be less accurate than that near the aircraft, which is another

reason that processing time should not be devoted to any "excess"

information.

There can be an interaction between frame length and frame advance

that affects the predictive capability of the system. The objective

is to keep the frame length long enough, and the frame advance short

enough that the predictive capability of the process is sufficient
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for the particular terrain that is encoumtered. This capability is

affected by the following factors:

a) Aircraft speed,

b) Acceleration limits,

C) Slope limits,

d) Kink limits, and

e) Terrain roughness and frequency content.

The characteristic frame length ccmputation requires an estima-

tion of the maximum expected obstacle height, H. If the specific

terrain segment to be traversed is known, an appropriate height

can be readily determined from the terrain data. However, in many

cases the exact terrain information may not be available in advance.

A possible method of estimating an H, in this case, is to select

I1 - 30T, where oT is the best estimate of the terrain standard

deviation (the roughness) in the general area of the flight.

4.4 Frume Junctions

Since one of the objectives of the terrain-following control

system considered here is to provide a fairly smooth command signal

to the aircraft flight-control system, care must be taken to minimize

discontinuities at frame junctions. Some of the possible ways of

joining frames can be visualized by referring to Figure 4-3. The paths

in the frame advance interval are of primary interest. Ideally the

computation of the optimal path for Frame 2 would start from point A,

the actual position of the aircraft at range RI. Unfortunately, the

computation of the optimal path for Frame 2 must begin when the aircraft

is at range R., and must be complete by the time the aircraft reaches RI,
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optimal path
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Figure 4-3 Frame Jumction

so that the commiands are available for the path imadiately following

that position. Therefore, computations for any frame must be based

on a predicted position at the beginning of that frame.

One possible way of beginning the Frame 2 computation is to pre-

dict the aircraft's position by some set of prediction equations,

based on the aircraft's position at Ro and the commands generated

by the optimal path of Frame 1. This is indicated as the point B in

Figure 4-3. The disadvantage of doing that, even though it may

more accurately represent the true aircraft position, is that the

optimal paths of Frame I and Frame 2 would be disjoint.

A more reasonable and simplier approach is to use point C on

the Frame 1 optimal path as the starting point for the optimal path

of Frame 2. In this way the optimal path will be continuous from

frame to frame, rather than disjoint. Furthermore, the slope and

curvature of the optimal path can be made continuous by matching the

Frame 2 values with those of Frame 1. Then the initial control point

is fixed rather than varied in determining the optimal path for

each frame. This is the procedure that is used in the parametric

studies of Chapter 6.

ib
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If the comend signals to the aircraft flight-control system are

based on a feedback controller, i.e., a signal proportional to the

difference in the optimal path and the actual aircraft path, then

these are continuous also because the aircraft values would be con-

tinuous. A possible difficulty would result for a terrain data

update in which the new terrain is significantly higher than the old.

This is illustrated in Figure 4-4, where the initial point C for

Frame 2 lies below the mininun clearance path. This creates

difficulties for the programing algorithms, as it is likely that

there will be no feasible solution that satisfies all of the clearance

constraints. Quasi-solutions that "approximately" satisfy the con-

straints are required in this case and will be discussed in Section

6.2.

Frame 2

Height Frame 1 clearance

RangeFigure 4-4 Infeasible Solution at Frame Junction

pah

4.5 Control Point0
The nzOuber of control points used per frame should be r arge

enough to allow adequate control flexibility. Fine spacing of the

I

ITh o o o o s e e r su b g
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control points allows the greater flexibility, but it also places

stronger demands on the flight-control system, as the rate of command

signal change will be greater. Rirthermore, the number of control

points and constraint points needed to span the frame is also greater,

which in turn requires greater amount of computation to solve the

optimization problem. While it is convenient to use uniform control

point spacing, it may not be necessary, or even possible for long

data frmes, if all computation is to be done in real time. The

spacing can be graduated so that it is finely spaced in the near

frame (close to the aircraft) and coarsely spaced in the far frame,

as showu in Figure 4-5. The rationale for this is that only gross

positional changes need to be considered in the far frame where

,,pdated data will be available for refinement in subsequent frames.

The main reason for the far frame data' is to predict far enough

ahead that the aircraft will not fly into an untennable position,

froa which it cannot recover. If the spacing is too coarse, however,

a loss of control flexibility will raise the mean clearance level

fcr, t,': flight.

SFrame Frame
-Advance Overlap

k

ýR
• "l control

Frame Length points

Figure 4-5 Graduated-Control-Point Spacing
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The limits on kink are inherently related to the control interval

and the curvature limits, as indicated previously in Eq. (3-14), and

in a slightly different form in the following equations.

Plim= (4-6)

Pmax Plm (4-7)

Pmjifn ' -Plim (4-8)

Tuo approaches to treating the kink limits are available. The limits

may be enforced directly in the optimization problem by including

them in the constraint set. Alternatively, it may be possiule to

choose the control interval such that the inherent kink limits are

acceptable for the specified curvature limits. Either of the two

alternatives must be investigated in terms of the optimization

problem dimensions, which depend upon both the number of sample

points and which types of constraints are enforced.

All of the various parameters that affect the framing process

are listed in the following section, while the parametric studies

are discussed in Chapters 6 and 7. The studies include frame length,

control point spacing, computational times, and frame advance

rates.

4.6 Specification of Framing Structure

The solution of the optimization problem requires the speci-

fication of many parameters and their nu.merical values. To

completely specify a framing structure the following parameters are

required:
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1) Frame length,

2) Pi advance distance,
3) Limits on path curvature,

4) M4inimum-clearance distance and type of clearance,

5) Raber and spacing of cotrol points,

6) Performance measure sample points,

7) Terrain sample points,

8) Clearance constraint sample points,

9) Performance measure coefficients,

10) Limits on path slope (optional),

11) Limits on kink (optional), and

12) Slope constraint sample points.

Note that the acceleration constraints need not be specified directly,

if the path curvature is the primary consideration. For a specified

frame structure, different nominal flight speeds can be used if the

corresponding inherent acceleration limits are acceptable, as

determined by

alim klm V 2 (49)

"The most convenient method of sampling is to use the same sample

interval for each of the variables mentioned above. The numerical

equations used are simplified by this procedure. However, there may

be some tradeoffs between the complexity of the equations and the

number of samples required, if soae of the variables can be sampled

at slower rates. These tradeoffs are heavily dependent upon the

particular framing structures being considered and are beyond the

scope o;" this study.

- ______________ -------- .t----
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S. TERRAIN AND CLEARANCES CURVES

Although the performance is measured and the constraints are

enforced only at discrete points, the investigation of the clearance

distance to the nearest terrain point requires a continuous curve

representation for the terrain. Many possible representations can

be chosen-; however the one selected here is a cubic spline function.

Onc of the reasons for choosing a cubic spline, with continuous

first and second derivatives, is that this closely corresponds in

smoothness to the optimal path that will be subsequently determined

from the terrain curve. Also, the techniques for fitting cubic

"splines through data points are well developed and have been very

successful in a wide variety of applications [1].

5.1 Cubic Splines

A cubic spline function is a sequence of cubic polynonial seg-

ments joined to form a continuous function that has continuous first

and second derivatives. The general function form is given in

Eq. (5-1) and is illustrated in Figure 5-1.

A I I I

y Y

x x2 x3 x4 x

Figure 5-1 Cubic Spline Function
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X-X X-xi 2 X- 4.y(x) Y .A±)aeC(I.-±) for 1-1,2,....n- (S-1)

where
aA xi+1 - xi (5-2)

The Junction points, (xi,yi), are called Imots". ?hny different

approaches to fitting the cubic spline function to discrete data

have been used [1,22,28,30]. No single approach is followed here;

the best features of routines by various authors are used.

One fitting method varies the positions of the knots and fits

the curve close to the data points in a weighted-least-square sense

(22]. However, assuming the terrain data points are the best

estimates for the actual terrain, the curve should pass through the

data points. To guarantee this, the data points are selected as

the knots. Then the fitting process is merely the determination of

the set of coefficients for each segment of the curve. For n data

points, there is a set of three coefficients (Ai, Bi, Ci) for each

of the n-1 segments. Note that there is no requirement that the

intervals between data points, ai, are equal, even though this is

often convenient. The continuous derivatives of the spline function

are
1i x ai 1 xi Z

1 B X-.X-)

y"[x) - [2 Bi + 6 Cia-i--)I (5-4)

To determine the coefficients, continuity conditions on y,y' and

y" are applied at each of the n-2 interior knot positions, using

b
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the relationships: at x-xi, (x-xi)/ai - 0, and at xUxi 1 ,1

((X-X)/aj 1.

For i-1,2,....,n-2

Ai + Bi + Ci " Yi~i'Y i  Y Y (5-5)

A + 2Bi + 3Ci - aiy' . HiAi÷I (5-6)

2Bi + 6Ci = ai 2 y' il 1 i2Bi+l (5-7)

where
Y i Yi+l')'i (5-8)

a.
Hi ai+--- (5-9)

1+1

This set of equations can be placed in a more convenient computational

form by replacing Eq. (5-6) with Eq. (S-10), which is obtained by

subtracting Eq. (5-5) from Eq. (5-6). Also, if Eq. (5-7) is divided

by two and Eq. (5-10) is subtracted from that result, Eq. (5-11) is

obtained. The resulting set of recursive equations is

Ai + Bi + C.i Yi for i - 1,2,...,n-1 (5-5)

Bi + 2Ci - HiAi~l a -Yi for i - 1,2,...,n-2 (5-10)

Ci + HiAil " i Bi+l = YAi for i - 1,2,...,n-2 (5-11)

Eq. (5-5) is also applied for the last segment (i = n-l) so that the

curve passes through yn. The total number of unknown coefficients

is 3(n-l), but only 3(n-2)+l conditions have been specified. There-

fore, two additional conditions must be given to uniquely determine

a cubic spline function through the n points.

I ________
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If both conditions are specified at one end point, the fitting

process is simpler, but the curve can exhibit instabilities; i.e., it

may oscillate wildly between data points as illustrated in Figure 5-2.

This condition can be easily avoided by selecting one condition at

each end point of the curve. The digital computer algorithm used in

the following cubic spline studies was taken from the UNIVAC 1108

Math-Stat Library [30]. It allows the user the option of using

eithei the first or second derivatives at each end point. It is

usually more convenient to use the first derivative conditions

shown in Eqs. (5.12) and (5-13).

S= a, Y'I (5-12)

1' +2- 3a
Bn-1 + 2Cn-l n-l yn - n-l (-13)

y

Figure 5-2 Unstable Spline Function

:l-

b ' I -
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5.2 1JfVAC Spline Fitting Procedure

The IINZVAC cubic spline p-itting procedure uses Eqs. (5-5),

(S-10), (S-11), (5-12) and (S-13) to form a set of 3(n-1) equations

that can be written using a "tri-diagonal" matrix form:

1 000 ... A1

1110 ... B, Y

0 12- o10 ... C, "Y
2o o 1 H1 -H1  0 A2  h

... 0 1 1 1 0 ... B2 Y2

... 0 1 2 -H2 0 ... C2 - -Y (5-14)

0 1 1 1 0

0 1 2 -Hn-2 0 0 "n-2

o 1 H-2 2 • -1 Yn-2

0 1 1 1 B .1 Yn-I

.0 1 n-.I a n-ly'nY n-

"Bi-diagonalization", or "uper-triangularization", of this matrix

is possible by the following procedure, which will also be mathe-

matically summarized after the description:

a) First designate the second row of the matrix as the ith

row,

b) Subtract the equation immediately above the ith row from it,

c) Replace the i th row equation by the resulting equation of

step b) after it is divided by the value of the first non-

zero element, ci, and

i!
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d) Now designate the row inunediately below as the new ith row

and repeat the process, starting at step b) above.

The matrix then has the form

1 c1 0... z

0 1 c2 0 ... z 2 w12

0 0 1 c 3  0 ... Z 3 w3

..... 1 c4  0 . W4  (5-15)

0 1 C 7W
3n_4 3n 4 3n4

•,. 0 ! i Zn..3 3n.3

whe;e the 3(n-l1J-dimensional z vector consists of Ai, Bi, and Ci

coefficients that are to be detenrined and the w vector consists of

appropriate linear conbinations of the elements of the left-hand-

sid. vectoi of Fq. (5-14).

The bi-diagonolization process is easily summarized by the

fol]owing recurs•.v equat ions:

c= 0 (5-16)

-- (r•-17)Wl= al y'1  ..

for i 1, ... , n-I

c~i- 1-ci_2(5-18)

Yi-1c" 3 i- 2

w-3i-1 Y i _2 (5-19)

for i , 2, ... , n-2

M c3  - - l (5-26)
Ii-

t1_
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"w -1 3i-1 (5-21)33i1

"" i (5-22)
c3 i+3 - i R

Y.-w-
W 3i+1 - i 31 (5-23)

Hi 3i

Once the above set of ci and wi values is computed by "forward"

recursion, the final coefficient, CnGl, is known:

Yn-w +a y'
A A n-I 3n-4 n-i n (5-24)On_ _•Z~n3 •W~n3 •- cmn4

Then the "backward" recursion can be performed to evaluate the

remaining polynomial coefficients, zk:

f o.. 1 = 7 n 4 , 3A -5 , , -6 . . .

k M Wk - Ck Zk+l (5-25)

5.3 Direct Slope-I)etermination Spline Fits

The above process for spline representation required the

storage of five values for each data point: the data point coor-

dinates xi, yi plu- the Ai, Bi, and Ci coefficients. Poirier [22]

indicates that some of this information is redundant. It is possible

to completely reconstruct the spline (and its derivatives) from only

xp, yi and y'i, a total of 3n rather than Sn values.

y(x) = (I - 3o2 + 2a3)yi + (3o2 - 2o3)yi÷1

+ [(u 202 + Q3)y'i + (U3 2 )y'i+l] ai (5-21()

S -.- • •. .. • •t,•~r -•~f.q ~ •. • !•...• ,-•+.•,,•,- ,••.•- (.u. -, , a. 'r )y' •1 a1 • :-.-, " e- .• '-&
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X °-X

a A Xi for xc[xi. x. 1* 1  (S-27)

The corresponding set of equations for the detmination of the

derivative-;, y' i that satisfy cubic spline continuity requirements

can also be put into a bi-diagonal form, as show inn Appedix D.

"1 cz  0 ... y*2

0 1 c3 0 ... Y'3 w3

0 1 C4  0 ... y' 4  N4

0 1 c5  0 ... (5-28)

o Cn- 2  Y'n-2 wn- 2

0 1 , 'n-i Wn-i'Cn-1 Y'n

The corresponding forward recursion equations are

c, 0 (5-29)

wa Y'i (5-30)

for i - 1, 2, 3, ... , n-2:

ci+1 " 2(11H (S-31)
3(Ei +'H i Ei+l)-WiWi3l * (i *. +iH i+ (5-32)

where Yi yi+l " Yi
1i 1411 i~ .x (5-33)

1T ,i+1 - i

The backward recursion equation is

for i - n-1. n-2, ... , 2:

Y'i = i ciy'i+l (S-34)
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While this direct-slope determination method uses the sme general

procedures as the UNIVAC routine, it has the advantages of both

requiring less spline coefficient storage and requiring the compu-

tation of fewer coefficients. The UNIVAC method requires ccuputation

of 9(n-l) values: the ci, wi, and zi, 3(n-l) of each. The latter

method requires only 3(n-2) values: the ci, wi and y'1i, (n-2) of

each.

5.4 End-Point Slope Estimates

The two fitting methods require end point slopes to umiquely

define the fit. For terrain systems, only the data points themselves

usually are available, but the slopes can easily be estimated from

these by using two, three, or four data points at each end of the

terrain segment. This corresponds to first, second, and third order

slope estimates, respectively, as follows:

Y'a x2-x-y- (5-34)

o 1 (x3 -xl) (xz2 x 1)
Yb " (xx (Y3"Yl) " - (Y2"Yl) (5-36)

(x4 -x3) (x4 -x2 ) ( x3-x,)

(y2-yl) (x2-xl)2 + (Y3 "Yl) (x3-xl)Z+ (y4-yl) (x4-xlZ (y'c 43423 (5-37)
x4x3 x-x2 X4 -X2

The indices are ordered starting with 1 at either end point and

counting toward the interior of the data interval.

Terrain data from a typical test terrain located in Pennsyl-

vania (designated 6201) [4] is used in the studies that follow. It
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is classified as moderately rough, aT - 367 feet. The splines are

relatively insensitive to the order of the slope estimate for the

typical terrain profile, as s3hn in Figure S-3. Therefore, an

extrme test profile (aT - 963 ft) wsconstructed in an attempt to

differentiate between the three types of estimates. The plots for

this case are shown in Figure S-4 and do show saoe differences at

the right end. However, there is no clear choice of a best fit, so

the final choice for actual implementation could be nWde based on

the ease of implementation, which would be the simplest one,

rq (S-3s).

5.S Clearance Curve Determination

In the determination of the clearance curve, the effect of

different types of clearance measurements is of interest. The

measurement considered most accurate is the slant clearance Cclearance

to the nearest terrain point), but the easiest one to use and the

one most frequently used in terrain following is the vertical

clearance. The two types will be compared in this section.

It is fairly simple to compute the locus of points that have a

.specific normal offset distance from a cubic spline terrain curve.

Such a locus is generated by continuously moving a line segment of

the specified clearance length along the terrain curve so that it

is always normal to the terrain. A 3000-foot-offset curve is shown

in Figure 5-S for the extreme-test segment constructed earlier. As

indicated in the figure-therc are problems when the instantaneous

radius of curvature of the terrain curve becomes smaller than the

specified offset distance. Loops with cusps are produced on the

offset curve. The obvious method for obtaining a clearance curve
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8.

4-4

4. data points 3rd

Ist

2.

0 . , , I ,
0. 2. 4. 6. 8. 10.

RANGE (K ft)

Figure 5-4 Fxtrere Test Terrain with Differeat End Slope Estimates

from the offset curve would be to reject those points on the offset

curve that arec on the loops or near the crossover point. The cusp

at the crossover point is undesirable for a smooth clearance curve.

Proper selection of points from the offset curve for cubic splining

was the approach finally considered in this study. The elimRinLation

of "improper" points on the offset curve is not a simple procedure,

but a method for doing this is presented in Appendix F. The slant

clearance curve shown in Figure 5-5 was obtained by this method,

which is considered a minor part of the study, since the presence of

loops would be very unlikely for practical data point spacings and

real terrains.

bI

,.-r- --- , S
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8-

S•_ 3-K ft-offset

\ • ]• slant
iu xer clearance Curves

A es ni n iis vert ic a l c r a e c

i ustnupcleardtace n t o the terai ui

S4

2-

An alernae aproac to ing th eroffse curve t osrc

0 2 4 6 8 10
RANGE (K ft)

Figure 5-S Extreme Test Terrain Clearance Curves

Also ffrhone wen Figure 5-.S is the vertical clealrce curve which

is just an upward translation of the terrain curve. The difference-,

| are p-onounced foi- the extreme case !-.hown; they would not be af,

different for typ~icail terrains, as indicated in Figure S-0.

An alternate approach to using the offset curve to construct a

slant clearance curve is to use a "local" estimate of the vertical

difference between tfie slant clearance and the vertical clearance

curves. The term local refers to the fact that the slope and

curvature at a single point on the terrain curve would be used for

the estinate, while tfle true differcnces are determined by many
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points. The estimates are ilJustrated irn Figure 5-7. and are based

on the asstunption that the instantaneous radius of curvature is

constant over the interval AR. This is not true ior a typical

terrain curve, but it is necessary iL order to obtain a simple

estimote. Thle constant radius of curvature does not imply constant

"curvature" (k d as seen by the relationship
dR

1 3 :i
r -- 1 sec y (S-38)

where y is the path angle, which varies with range. Note that the

radius of curvature is also negative when the curvature is negative.

The estimate can be obtained from thev CS'l triangle in Figure S-7

by the cosine law, as showa" in Appendix F.

c n + 6 r _s•m (I) x AE - n, 2 
- 2r(n - ) (-3S-e ~n V I n ...

where n is the normal (slant) clearance distance and

0 n cos y (5-40)

It ;y \ I L '.L

/ terrain D curve
r curve 01

C- r)

a. pCsitive curvature b. neg-.tive curvature

Fligue 5-7 local Lstijiates of Clearance Differences

U. . . ..
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There is a simpler approximation if the magnitude of x, as defined

by Eq. (5-41), is very small compared to unity.

A 2rn2 (n-6) 2nw(n-0) (5-41)

(re-n ) C-nw) I
where

n- ko 3  (5-42)
n

Then

1 + rn(n-0) n'(1-w) (543)(re,-n') •(-3

The total vertical clearance distance for the estimated curve is ce-

A comparison of the three types of clearance curves is made

in Table 5-1. The slant-clearance curve is used as a standard of

reference; the differences between each of the other two clearance

curves and it are listed. The data in the table are given for two

U-tLe.._u. i .twules: Lie - 'rc-.c test sc,-.,ent ar, the typical terrain,

segaent, which were shown in Figures 5-5 and 5-6, "respectively.

Because of its local nature, the estimated clearamice frequently

corresponds to the clearance distance for the lower portion of a

loop when loops are present on the offset curve. This is an

undesirable feature, as can be seen from the extreme-test terrain

clearance data, ui tiC typyical terrainlara-ed, cntdata that

the cstimated clearance is an excellent approximation of the slant

clearance when loo-s are not present in the ulfset curve. Since

thtv estimated clearance requires significantly less computation,

it wouhl be a good selection for :he reference clearance path in

rough tcrr,•n. Ystimated clearance is used for the cleaiance currcs

in the p~aram~etric stulic%, in Chapters 6 and 7.
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Table 5-1 Comparison of the Differences ip Clearance Curve Heights

VC - Vertical-Clearance Curve

SC - Slma,.-Clearance Curve

I;C - Istimated-Clearance Curve

Typical Terrain Extreme Test Terrain

Range VC-SC EC-SC VC-SC EC-SC
(All Values in Feet)

2000 - .2o .10 - 89.3 - 52.5
4000 - .28 .00 - 50.8 + 1.6
6000 - .00 .00 - 215.5 + 25.3
8000 - ,80 .00 -1400.3 -1159.5

10000 - .26 .00 -1722.5 -1716.8
12000 - .86 .00 - 395,5 - 102.7
14000 -2.34 + .02 - 102.8 + 124.6
16000 -5.74 + .02 - 1.18.4 - 104.9

18000 -5,02 .00 - 927.8 - 883.3
20000 -7.06 .06 - 424.6 0.0

22000 -4.08 .02
24000 -6.52 .02

26000 -8.72 + .08
28000 -1.14 .00
30000 - .86 .00
32000 -4.66 + .04

34000 ,7.20 - .02
360.0 - .18 .00
38000 -4.00 + .02
40000 - .30 .An

42000 - .36 .00
44000 - . 68 .00
46000 -(,.44 .00
480"0 -5.32 + .02
50000 -3.10[ + .02

I



o. REFERENCE PATH DETERMINATION

AND PARAMLTRIC STUDIES

The previous chapters developed the optimization problem for the

determination of a reference path and discussed the parameters

affecting that problem. In this chapter various solutions of the

optimization problem 4re considered, as well as some of the charac-

teristics of the algorithms that are used to coapute those solutions.

Two basic approaches to solving the problem are discussed: the

firzT. is a penalty function method of treating clearance constraints,

the second and preferred approach is to treat the constraints

directly by the mathematic il programning method. The discussion

of the penalty function approach is brief and is included only

because it is one that is frequently used with state variable

inequality constraints, and some interesting charact'ristics are

observed when usi ig it.

6.1 P Funcion Approach

The first approach is an exterior peralty-function method

utilizing a general parameter-search optimization algorithm. The

penalty function liAits the clearance constraint violations and

search-direction limits enforce the curvature constraints. A

Davidon rank-one search algorithm [9] is used. The rank-ore algor-

ithm is not as conuonly used as the LDavidon rank-two algoriihm,

which i equires a one-dimensional optibaization along the search

dircrtion in parameter space. The rank-one algorithm was selected

because it has a self-adjusting step size that does not require a

72
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one-dhnensional optimization along each search direccion and it

was felt that fewer iterationsý would be required. Both algorithms

use estimate.s of the variance (the inverse of the Hessian matrix) to

establish search directions in the parameter space. The rank-one

method updates the variance estimate with a matrix of rank-one, based

on the gradient vector. Details of the method are found in

Reference 9.

The penaity function creates convergence problems near the

final solutions, because of thz ar'tificially steep cost surfaces

introduced by the penalty term. This is a problem discussed by

hleltrami 151 and others !17]. To further complicate convergence,

the parameter limits on curvature also inteini.pt the nonral search

procedure. The Davidon rotine was modified to reduce the effective

dimension of the search whe.,lever a parameter space boundary was

encountered. This was done by reducing the rank of the variance

estimate appropriately. Hlowever, once the rank was reduced, the

search remained on the corresponding bo, ndary. To allow for flex-
ibility so that the search could leave the boundary, special tests

anud procedures to increase the rank of the variance had to be in-

corporated. The techniquc is il ustrated in Figure 6-1, for a

search in a two-d.imensional spu.a C. ThQ level curves of the cost

function arc sketched and the negative gr:adient directions are

ii,,licated by arrows along a possiblc search pata. If one of the

boundaric.s is encountered during the search, the method searches

the boundary surface by reducing the variance in razuk (to a rauk of

----
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-- negative gradient directions

I x2 / X2max ._

* //search path

X Imax

//• cost

level•i ,•j -- curves

xl

Figure 0-1 Bounded Parameter Search

x, one, in the example). Any time the negative cost gradient points

out of the allowable parameter space the search continues on the

boundary, but if the negative gradient points inward the variance

rank is increased again to allow the search to leave the boundary.

The procedure works fairly well, but when coupled with the penalty

function ill-conditioning there are regions where the method

tends to jump on and off the boundary as it jumps back and forth

.1. across the penalty function valley. This difficulty could probably

be elimin)atcd by an. acceleration scheme such as those discussed by

ieltrami j5], and Kelley and Denharn 17]. Sequential increases 4'
in the penalty function coefficient improve the convergence for

some problems, but stepping thc coefficient does not help signifiP

cwatly for this problem. This is due to the nature of the parameter

'ost relationship. Trajectoriet; which lie very close to one

...............,...
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* anotixr in position space may differ in all the curvature parameters

-- not just in one or two. Small changes in the near frme paraeters

cause larger changes in the far frame trajectory because of the double

integratiun of the control function. So it is nnt easy to go from

the solution for one penalty coefficient to that of another, because

of the complicated interaction of sensitivities and constraints.

The moderately rough terrain segment shown previously in

Figure S-3 is used to test all of the optimization approaches con-

sidered in this chapter. A typical penalty function solution is

shown in Figure 6-2. The framing structure for this solution is

Structure 1 in Fable 6-3 on page 86, which gives the structures for

all of the cases considered in this chapter. The number of iterations

required for the solution to converge is very large for sone frames

when the penalty function approach is used. However, the rate of

convergence is rather rapid at first and then slows considerably

as the number of iterations increases. This fact is confirmed by

Figure 6-3, which dcpicts solutions with various limits imposed

upon the number of iterations in each optimization frame. Very

little improvement is observed in the path when more than 80

iterations per frx-ne are allowed. The case with a 150 limit has

slightly greater clearance violation, but the path also goes slightly

lower into the valicys than that for the 80-limit case. There is

essentially no difference between the 500-limit path and the ;'Pth

without limits shown in Figure 6-2. Therefore, the large

I _ /
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number of iterations are not really needed for reasonable

ierfonfiancc. The final path refinement is not significant, while

Vic comnutation t ime required for it is large. The solution times

corre ,piidihng to the various limits are given in Table 6-1 for

framing Structure 1 (Table 6-3). These times are compared to the

solution times for the quadratic progranming routines which will

be discussed below.

Table 6-1 Central Processor Solution Timies

Iteration Limit Average Time
AŽpproach Per Frame Per 7rame (Sec)

Penalty Function 80

500 8

none 11

Quadratic Programmning

Shankland none 1

Lemke- RFivi ndran none '

""iTe penalty function approach requires more computer tine and does

not have well defined lower clearance boutds; therefore, the pro-

gramming solutions are a much better approach.

6.2 Ojuadratic Programming Problew Mproayh

Two quadratic progralrxiing algorithmis are used to obtain solutions

to the optimization Problem. Shankland's algorithm 129] uses the

direct quadratic prograimninj, formulation described in Section 3.4,

.liile the Leimkc-Rwvindran algorithm) [2k] is based on the complementary

j problem of Sect ion 3.5.

1i
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Shankland's method seeks to find a solution by iteratively an-

forcing vari(us sets of the inequality constraints as equality con-

struints. "11wo proper set of constraints is found by considering the

control vector that maximizes the performance index subject to the

enforced equality constraints. The maximizing control vector at

any particular iteration step may violate some of the inequality

constraints that are not imposed at that particular step. The

iterative procedure selects some of the violated constraints for

addition to the imposed set by minimizing the Euclidean norm of the

constraint violation vector. If a solution exists the violation is

driven to zero. If a solution does not exist, the violation vector

is minimized. This is a definite advantage when numerical errors

make the problem "slightly infeasible."

The Sluikland algorithm does require a positive-definite

qitdratic performance matrix, so it is not as flexible for performance

criteria investigations as the Lenke nmetl•c , in which the quadratic

matrix can be set to zero for a linear performance criteria. However,

the Shankland method requires considerably less storage space than

the Lemke algorithm uses, since it does not store the complete

complementary problem matrix. If Q and C are designated as the

quadratic cost matrix and the complete constraint set matrix,

respectively, their dimensions are indicative of the storage space

rcquircd for Shankland's method, but the Lemke routine, as used,

combines these matrices into the much larger F. matrix with a large

number of zeroes in the lower right corner.

I _ __
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(Typically the zero matrix may be 40 x 40 or larger). It is possible

to reprogram the Lemke algorithm to take advantage of the zero

matrix, but the optimization of the computer programming is beyond

the scope of this study.

The solution of each data frame is essentially the same for

both algorithms. The Lemke routine is chosen for further analysis

because of its flexibility, but it is not necessarily recomended

for use in an operational system. The Lemke algorithm used in this

study is one revised by Ravindran to use a special Revised Simplex

search. This algorithm worked extremely well, except for very large

M matrices of dimension near 100. (Ravindran's routine was originally

limited to a dimension of SO). For the large dimensional cases, a

large number of iterations caused a build-up of round off errors in

the recursively calculated matrices, until reasonable solution

accuracy was lost on some particular data frames. The more

reasonable 60-dimensional problems produced solution accuracies of

approximately seven significant digits. This accuracy is determined

by comparison of the two sides of the complementary problem vector

equation (Eq. 3-39). Similar numerical difficulties are experienced

during a matrix decomposition routine used in the Shankland method

when large dimensional optimizations are attempted.

A comparison of the successive frame solutions using the penalty

function and the quadratic progrmmilng approaches is shown in

______________________________________________ __________1



81

Figure 6-4 for framing Structure 1. Although it is more natural to

think of the control variable in terms of acceleration, the curvature

is plotted throughout these studies. The curvature is more closely

related to the path and it includes the effects of both acceleration

and velocity. For example, the curvature limits in Figure 6-4 of

0.0000875 and -0.0000175 ft"1 correspond to +3.4 and -0.58 G's at

Mach 1 (Vi1117 fps), or to +0.85 and -0.17 G's at Mbch O.S (V-ss8 fps).

To give the.reader a feeling for the control magnitude, the acceler-

ation limit corresponding to each curvature limit is shown in the

figures and is based on a nominal velocity of 894 fps (Mach 0.8),

unless otherwise specified. This is the velocity used in the air-

craft simulations discussed in Chapter 7. d

The framing process is illustrated also in Figure 6-4. Three

frames are shown with a frame advance distance of 4000 feet. This

same advance is used for most of the studied framing structures.

It is chosen to be small compared to the frame lengths used, and

it is held constant to minimize any interactions between other

framing parameters. only the portions of the optimal paths in

each of the advance intervals is used for guidance in real time

application.

'Ilie penalty ftiction trajcctory lies lower than the quadratic

prograiming trajectory, but it also violates the clearance constraints.

If the lower clearance values are acceptable, it is preferable to

intentionally set the clearance level lower than to allow violations

of the clearance l.vel. This would provide more reliable control of

the minimum clearance distance.
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6.3 Performance Criteria Study

An important concern in terrain following is the criterion for

"closeness." Quadratic, linear, and mi-max criteria, based on the

clearance distance above the reference clearance curve, are

considered here. The effect of the squared term in the quadratic

cost function is to emphasize large clearance errors more than

small errors. The min-max criteria goes even further in this

direction.

6.3.1 Quadratic and Linear Performance Measures. The linear

performance measure can be considered as a special case of the

quadratic measure where the squared term coefficient, Q0, of Eq.(3-2)

is set to zero. Before the study of the coefficient values of Qn

and Ln was conducted, it was assumed that a change in the ratio of

these coefficients could make a significant change in the solution.

The values of Qn and Ln are the same for each sample point, but

to "normalize" the performance measure, these values were based

on the number of sample points. That is, values of CQ and cL were

specified and the Qn and L. were computed from these and the

number 3f performance measure sample points, N
p

(6-2)

cL
In N (6-3)

NJ)

Four sets of coefficient values are shown in Table 6-2, and the

corresponding trajectories are essentially the same, even though
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there are sane slight differences in the curvature controls, as

shown in Figure 6-5. The data in Table 6-2 are for seven frues

based on Structures 2 through 5 of Table 6-3. The framing

structures are identical except for the performance coefficients.

Table 6-2 Cost Coefficient Comparison

Framing Total Nr. Computation
Structure Nr. c L of Iterations Time (Sec)

2 .1 .0 210 9.0

3 .1 .001 206 8.9
4 .1 .1 291 9.8
5 .0 .1 329 10.7

Contrary to what was initially expected, the trajectories are

quite insensitive to the values of the cost coefficients. After a

little reflection this is not too surprising; the trajectories for

the terrain following problem tend to be very constraint bound.

The major portions of them are on some form of constraint boundary:

a maximum pull up, a maxim•n push over, or a clearance curve

boundary. The optimization problem, then, consists primarily of

piecing these different types of trajectory arcs together at the

proper points with suitable transition arcs. This is just the type

of procedure that terrain-following investigators have attempted to

do for sone time now in the construction of ideal paths, but the

schemes have not been applicable to real time implementation

(except for that of Greaves).

Although the linear performance meast.-e (last one in Table

6-2)requires slightly more computation time with the Lemke algorithm,

L-S
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it is worth noting that it does have significant advantages. The

Lemke routine was used for this linear case because of its flexi-

bility, but other linear programming algorithms could be used. Saoe

would require less computer storage and would probably be faster,

since the dimension of the overall programming problem would be

reduced from that of the complementary problem.

6.3.2 Min-Max Criterion. Although minimizing the maximun vertical

/ distance above the reference clearance path seems to be a reasonable

criterion, it does stress one critical clearance distance on the

data frame interval. Figure 6-6 shows the composite solutions from

three successive data frames using the min-max criterion, with Qn

I• = 0, compared to the solutions for the quadratic criterion.

These correspond to framing Structures 6 and 8, respectively, of

Table 6-3. Notice that the optimal path for the min-max criterion

does not follow the smoother portions of the clearance path as

closely as does that of the other criterion, where the optimal path

coincides with the clearance path unless the curvatures are too

great. Another disadvantage of the min-max measure is that the upper-

limit constraints on the clearance values increases the dimension

of the programming problem (a linear one) with additional constraint

equations. Since the difference in clearance maxima for the two

paths in Figure 6-6 is less than two feet, the disadvantages outweigh

the advantages for this performance measure.

6.4 Frame Length Study

The characteristic frame length was developed in Section 4.1

to estimate the minimum frame length required for good terrain
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and 30,800 feet are based on a maxinun-expected-obstacle height

of 1000 feet and on the framing Structures 7 and 1.0 of Table 6-3.

To study the effects cf frame length on the framing procass,

three different frame lengths are compared for each of the charac-

teristic lengths. One length is approxiiately equal to the

i characteristic length, one is shorter, and one is longer. TheS
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lengths used in the study are given in Table 6-4, along with a

stinmary of other pertinent framing parameters. The complete sets

of framing parameters arc those for Structures 7 through 12 in

Tnble 6-3. Table 6-4 also gives the characteristic control intervals

and the actual intervals used for the optimization solutions.

j Table 6-4 Frame Length Study Data

Characteristic ,mt. Time

Control Frame Frame Complem. Nr. of Avg.
Type of Interval Interval Length Length Problem Frames Frame Total
Ride (ft) (ft) (K-ft) (K-ft) Dim. in Run (Sec) (Sec)

Hard 1000 1440 18.8 12 36 10 0.9 8.9

(-i,+2 G's) 20 60 8 2.4 21.5
V-894 fps) 28 84 6 6.2 37.1

Soft 2000 840 30.8 20 40 8 0.8 6.6
(-.25,+2 G's 32 64 S 1.6 8.2
V-894 fps) 44 88 2 3.1 6.2

The large control Interval is used for the soft ride to reduce

the number of sample p)oints and, hence, the dimension of the

optimization problem. The acceleration values shown in the figure

are for two sets of curvature values at Mach 0.8. The same control

interval is used for each case in a particular ride set; thus, the

frame length is the only framing parameter varied in each set.

The hard ride optiMnl paths and controls are shown in

Higure 6-7. The two longest frame lengths (20 and 28 K-ft) produce

essentially the same paths. This indicates that any frame length

greater than 20,000 feet is not needed. The shortest frame length
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represents a 40; range reduction from the mid-length case. The

corresponding reduction in predictive capability produces smll

degradations in performance after the terrain peeks. The charac-

teristic estimate of 18,800 feet agrees well with the lenvgth of

20,000 feet that provides good performance over the test terrain

segment.

For the soft ride, the two paths corresponding to the two

longest frame lengths are also essentially the same, even though

there are minor variations in their curvature profiles, as shown in

Figure 6-8. The shortest frame length is a reduction of 60t in

range front the mid-length case. This large reduction causes a

corresponding significant decrease in performance after the peaks.

The use of a control interval significantly larger than the charac-

teristic control interval may also be a factor contributing to the

performance degradation. Oice again, the characteristic frame

length of 30,800 feet appears to be a good estimate of what is

required for good performance in Figure 6-8 (approximately 32,000

reet).

The total time comparison for the soft ride in Table 6-4 is

misleading due to the disproportionate length of the longest frame

compared to the total range of the run (48,000 ft). Table 6-5 shows

a more detailed comparison of the ni times for the soft ride with

the two longest frame lengths. (The shortest frame length run was

not considered in this comparison since its performance was

!;ignificantly worse). The average frame times are used to predict
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computation times for two longer runs. Since the range covered by

successive frame-advance intervals is the portion used for guidance,

those correspxoding poIrtions must be comparalle for two different

frame lengths if the run time comparison is to be meaningful. As

the total range of the run increases the advance coverage for the

cases shown in the table becomes more nearly equal. As expected,

the longer frame length requires longer run times, just a- it did

for the hard ride comparison.
,3

Table 6-5 Soft-Ride Computational Run Trme Predictions

Avg. Frame Total
Run Frame Frame Number Advance Time

Length Length Time of Coverage (*Predicted)
(K-ft) (K- ft) (Sec) Frames (K-ft) (Sec)

48 32 1.6 S 16 8.2

44 3.1 2 4 6.2

72 32 1.6 11 40 18.0*

44 3.1 8 28 24.8*

96 32 1.6 17 64 27.8*

44 3.1 15 5z 46.5*

Comparison of Figures 6-7 and 6-8 indicates that as the maneuver-

ability of the vehicle decreases the predictive capability of the

control system must increase; i.e., the system must "look" further

ahead. Furthermore, narrowing the acceleration span increases the

vehicle's flight range, but it also increases the mean clearance

of the path. The increase in possible flight range of the vehicle

can be verified by considering the curvature profiles. The

magnitudes of the curvature values are an indication of the induced

Sb
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drag on the vehicle at any time. As the induced drag increases the

flight range decrea.ws for a given fuel supply. If total range

is critical, a compromise must be made between the acceleration-

limit span and the mean clearance altitude for the flight.

6.S Control-Point Spacing

The spacing of the control points certainly affects the

resulting trajectories in regions where the control is not on a

curvature-constraint boundary for an extensive distance. This

is illustrated in Figure 6-9 by three cases with different control

intervals. All other framing parameters are held constant, as

indicated in Table 6-3 by Structures 13 through 15. To prevent the

problem dimension from becoming too large for the finest control-

point spacing (500 feet), the last half of the frame uses a 1000-ft

spacing.

On the fourth frame of the run with S00-ft spacing, computational

difficulties were encountered. Because of solution inaccuracies "due

to round-off error accumulation from the third frame, the fourth

frame had an infeasible solution--the path was slightly below the

minimum clearance curve at the beginning of the frame. Therefore,

this run only covered a total range of 28,000 feet, while only

14,000 feet of that range was covered by the S00-ft interval spacing

of the control points. The majority of the remaining range is

composed of pushover arcs. These portions are very predictable in

nature. Therefore, the portion shown in the figure is fairly

representative of the behavior with the fine control-interval spacing.
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The behavior more closely resembles a bang-bang control than does

either of the other two spacings. The finely spaced control has

the largest kink values and the largest excursions in curvature.

This places a much heavier stress on the tracking and flight-control

systdns, as well as the structural coqmonents of the vehicle.

Vibration and fatigue may become serious problem for prolonged

flights in this regime.

A comparison of the run times for the control interval study

is shown in Table 6-6. The fine-spacing rums not only require much

greater computation time and taxes the control system more heavily,

but it decreases the total flight range, while lowering the trajec-

tory only slightly in some regions. For these reasons, the numerical'

problems with this framing structure are not pursued further,

although programming refinements could probably overcome the

difficulties.

Table 6-6 Control-Point Spacing Parametric Data

Computation Time (Sec)

Control Nr. of Complementary Number Average
Interval Control Problem of Per

(ft) Points Dimension Frames Frame Total

1500 30 80 VZ 6.7 26.9

1000 20 00 8 2.4 21.5

2000 10 40 8 1.0 7.8

There must be a compromise between small control intervals to

allow the path to follow the terrain more closely and large control

intervals which reduce the computational and control rate
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requirenvoits. The particular vehicle and mission must be considered

in making this decision.

6.6 Slope Constraints

Slope constfaints on the flight path have usually been applied

in previous designs to prevent the aircraft from descending too

deeply into valleys, from which steep recoveries are required,

followed by excessive overshoot of the terrain peaks. For this

reason, slope constraints have not been applied in this study prior

to this point. For some applications, definite requirements do

exist for slope constraints, such as for transport aircraft or for a

"let-down" from high altitude. The effect of a dive constraint (-0.1

minimum slope limit) on the optimal path is shown in Figure 6-10.

No positive slope limit was imposed in this case. The slope-

constrained path is compared to one without slope constraints; these

two cases use framing Structures 16 and 17 of Table 6-3. The paths

appear very much as one would expect, with flattened let-down

segments in the regions where the negative slope constraints are

active. However, the curvature profiles show that there is not

sufficient time for the path to reach an equilibrium condition of

zero curvature over aiy appreciable interval in these regions.

The addition of the dive constraint increased the complementary

problem dimension from 60 to 80. The maximun desirable dimension

for the Lemke-Ravindran routine appears to be approximately eighty,

but other algorithms could probably handle higher dimensional

problems, particularly the linear programming algorithms.
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The choice of various framing parameter, should be based on

overall system considerations, including tracker performance, which

is discussed in the following chapter. :.t should be emphasized

that most of the changes in fraiaiing parameters that may be desired

for various trade-offs do not involve computer program changes;

the only required changes are numerical data values. Thereform,

the optimization scheme is very flexible.
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7. SIMULATIONS OF THE TRACKER SYSTEM

A variety of tracker systems can be used to mike the aircraft

follow thl optimil paths presented in the previous chapter. However,

one of the goals of the optimization problem is to obtain a path that

can be easily followed, and the solution of the optimization problem

provides much more information than is available in other types of

path processors. All derivatives of the optimal path are available

to provide the tracker with saw predictive capability. The block

diagrm for the general tracker system is shown in Figure 7-1.

et n anacigatrons
d system

S~~h, h',h,

Figure 7-1 General Tracker System Diagram

The derivatives shown are with respect to range, rather than time,

so the coordinate transformations of Eqs. (7-1) and (7-2) are required

either in the navigation or tracker system.

to = d- 1 (7-1)

x' - t' i (7-2)

This conversion is considered more appropriate than the use of the

time domain, since terrain is fixed in the range domin and control of

the path with respect to the terrain is the ultimate aim of the control

100
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system. To test the optimal paths thlt have been generated for

tracking feasibility, a simple tracker system is combined with a sir-

ulation of an aircraft. The specific tracker system studied is

diagrammed in Figure 7-2.

To e p limiter pitch areud:t
ytem. eoptimal h'p commindu fairsta

path t a control
computer system+ Ho ,te

hI

h"l system

Figure 7-2 3-Channel Optimal-Path Tracker System

To determine pitch commands, three error signals are used: the

altitude error and its first and second derivatives with respect to

range. Each error is based on a comparison of the optimal-path value

with the aircraft's actual value as determined by the navigation
system. Since the optimal path is computed with continuous first and

second derivatives, and the aircraft values are continuous, the

error sigr~als are also continuous. Since a range interval of optimal-

path data is available prior to its use by the tracker system, a

pure adven.ce in range of the optimal curvature signal is feasible to

i compensate for lags in the overall aircraft system. However, the

Ic'fei'•ts of lag are minor for the aircraft in this simulation, so

this possibility is not pursued further.

The tracker system does not require "full state variable feedback',

but it does require a coordinate transformation to convert the aircraft

/
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motion from time dependency to range dependency. The nonlinear air-

craft model has eight state variables, but only three variables are

fed back for the tracker system employed here: h, h', aid h".

SThe siq)lifying assumptiois made in the simulation are as

follows:

1) The atmospheric density, p, and the speed of sound are

constant,

2) The center-of-gravity of the aircraft does not change during

the flight segment, and

3) Perfect navigation data on the aircraft state are available.

The particular aircraft data used for the simulation are for the F-4C,

and the model is made as accurate as possible for the data available

[12]. The simulation model incorporates a stability augmentation

system (SAS) and a linear model of the control-surface actuator. A

limiter is included to prevent the commands from driving the control

surface past its physical stops, which allow a total stabilator

rotation of 28*. 7he aerodynamic moment and forces are computed as

linear combinations of the state variables, with the stability

derivatives as coefficients; however, the nonlinear dynamic equations

for aircraft motion are used. This provides a more accurate aircraft

model than the completely linearized one frequently used to investigate

aircraft control systmts. The aircraft equations of motion and data

are given in Appendix (. The nominal flight speed for all rums is

Moch 0.8 at sea level (894 fps).
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The spatial frequency content of the input signals to the tracker

are determined strictly by the character of the optimal path. The

curvature and kink limits, the control point spacing, and the terrain

data affect the frequency content of the optimal path. Therefore, the

set of tracker gains that minimizes the tracking errors is dependent

upon the framing structuare as well as the terrain. It is possible

to change the gains in the tracker based upon the particular framing

structure selected and upon the anticipated terrain roughness;

however, a set of fixed gains worked well for all of the framing

structures tested in this simulation.

The gain values used in the tracking simulation are approximately

those obtained by a simple gradient parameter search [27] to minimize

the sum of the squares of the tracking errors in each channel.

Various test curvature control-profile fumctions were used as input

signals to the tracker system in the process of adjusting the gains.

The resulting gains are only appropriate for the particular aircraft

system that is simulated here.

For two sets of gains, Table 7-1 lists the performance data for

tracking an optimal path with a fairly oscillatory control curvature.

The path is the one shown in Figure 6-9 with the 1000-ft control

interval (Framing Structure 14 of Table 6-3). The first set of

gains was chosen after a few trials based on the estimates of what

would be appropriate if the aircraft behaved as a third order linear

system. The second set is the result of the gradient search optimiza-J "tion that started from Set 1 values. Although the improvement in

____________
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Table 7-1 Tracker Gains & Performance

(Based on 241 Sample Points at 200 ft Intervals)

GAINS: Set 1 Set 2

GO S.0 5.0

G1 1.0 2.0

G2 0.4 0.8

TRACKING FRPORS:

u• ÷18.34 ft +11.46 ft

ah mi'-19.08 -11.70

9.21 6.50

max +.02649 (+1.S0) +.01268 (.0.70)

AS min -. 02828 (-1.6-) -. 01151 (-0.6')
ýRmsk .01143 ( 0.6') OO0S35 ( 0.3-)

Ak x +.9782x10O4 ft1(2.45 G) +.2053<104t G)

Lk IT• -. 6932 (-1.73 G) -. 2409 (-0.60 G)

R.,S .1877 (0.46 G) .0800 (0.20 G)

Opti-ai
ACCELED•TIGNS: Path Values

Smax +2-00 G's +2.11 G's +1.94 G's
._Ni1r ran -i.00 -1.49 -l. O8

l + .... -i
1IV1
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performance obtained by the tracking optimization is not large, it

is significant enough to add confidence in the use of the improved

gain set.

The perforunuce using Gain Set 2 for a variety of optimal-

trajectory inputs is illustrated by the remaining figures in this

chapter and the data are summarized in Table 7-2. Sho~n in each figure

are four plots: first, the altitude or height error, then three com-

parisons of the optimal and aircraft path data--the heights, slopes,

and curvatures. These plots indicate the error behavior in each of

the three tracking clhnnels. A soft-ride trajectory i.s shown in

Figure 7-3, while Figures 7-4, 7-5 and 7-6 show hard-ride runs with

basic control intervals of 2000, 1000 and S00 feet, respectively.

These runs use framing Structures 11, 13, 14 and 15 (Table 6-3).

In Table 7-2, the minimum height error appears insensitive to

variations in the jerk limits. However, the maximum and IS height

errors show a trend toward increasing errors with increasing jerk.

The run with the finest control-point spacing appears to be an excep-

tion to this trend, but it is based on fewer sample points over a

portion of the terrain that appears to cause smaller tricking errors,

as can be observed from Figures 7-3 through 7-6. All other tracking

errors follow the same trend. Furthermore, vehicle fuel economy

and pilot ride comfort vary inversely with jerk and DES acceleration.

Therefore, it is desirable to keep the jerk and acceleration as low

as possible, but restriction of this maneuvering capability also

increases the INS excess clearance for the flight, as indicated by

3
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the values listed for the reference path in the table. Sae copromise

betwen the two effects is required.

The accelerations given in Table 7-2 are those measured at the

pilots station. Since the pitch rates are small, there is little

difference between those and the normal accelerations at the aircraft

center-of-gravity. The objectives for this controller are to control

very closely the extrenes of the normal acceleration and the terrain

clearance. The sijmlation results presented here indicate that this

is done extremely well.

iS



8. REAL TIME AIRBORNE APPLICATIONS

The overlapping frame process described in Chapter 4 was

designed for real time airborne application, as illustrated in

Figure 8-1. Three successive overlapping from of terrain data

terrain data frame 1
guidance frame

frame terrain data frame 2
"-aV-ance -72 optimization frame

.fr ae terrain data frame 3
advance terrain input frame

Figure 8-1 Real Time Framing

are depicted in the figure for a particular time, t. The time inter-

val allowed for the optimization processing of one frame is at.

Frame 1 contains information that is based on terrain data that was

input to the system two time intervals earlier, at t-ZUt. The path

optimizer began processing this terrain information one time interval

earlier, at t-tt. The optimal path solution that was computed is

currently being used in the tracker system for guidance of the air-

craft. Also, at time t, the Frame-2 terrain data is being processed

by the optimization routine; it was input to the system one time

interval earlier, at t-At. The terrain data in Frame 3 is currently

being input and stored in the processing system. The terrain data can

112
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be provided by a forward-looking radar, or it can be obtained from

stored terrain map data if the aircraft position relative to the

map is known.

SDuring the time corresponding to each of the frame advance inter-

vals, a complete optimization problem is solved, and a new set of

terrain data is stored. These two distinct information processes can

be done simultaneously, or on a time-shared basis, depending upon

the processor structure available. The assumption that separate

processors are available for the two tasks is made here. The process

with the longer duration (probably the optimization) determines the

maximum frame advance distance that can be used in real time.

If computation time were not a factor, computational errors

could be maintained at a negligible level compared to the errors

introduced into the system by the terrain and navigational sensors.

However, in real time applications, the computational time is severely

restricted, and the partictvlar framing structure is the key to com-

putational time and computational accuracy. There generally must be

a trade off between computational time and accuracy. The framing

structure described in Section 4.6 allows a great variety of combina-

tions and trade offs. As previous results indicate, the computational

time increases extrcrnely rapidly with the increase in the dimension of

the optimization problem. Since the performance is measured and the

constraints are enforced at various sample points, the dimension of

the problem is determined by the number of sample points, which

depends upon both the frame length and various sample intervals. It

I
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is desirable to reduce the mmber of sample points as much as possible,

to minimize both the computational time and storage. The factors

involved in this reduction are discussed below.

8.1 Total Numbcr of Sample Points

From the various parametric studies discussed in previous chapters,

the following conclusions can be drawn with respect to reducing the

total number of sample points:

1) Slope constraints should not be applied unless there is a

strong reason for limiting the flight path angle. Many flat and

moderate terrains will not require slope limits, because the limits

would not be normally encountered. If required, they can be stmpled

more coarsely than the clearance constraints, since the slope changes

are more gradual.

2) The min-max criterion requires more constraints, in the form

of upper bounds on the clearance distance, and should not generally be

applied.

3) The linear programming problem may not require as large an

optimization problem as the quadratic programming problem, so the

linear performance criteria is recommended. Theoretically, the

solution may not be unique for this problem--there may be more than

one set of control points that give the same optimal performance

neasure, hut any of these would be acceptable, or equally "close" to

the terrain. Therefore, no effort is made to study non-uniqueness

here.

4) The spacing of the clearance constraint points must be as

fine'as the finest control point spacing to prevent constraint
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violations between constraint points from becoming significant. A

similar argument can be given in regard to clearance constraint point

spacing vs. terrain point spacing. The terrain and clearance curve

intervals are assumed to be equal, and if the clearance-constraint

interval is not at least as fine as the sample interval of the

clearance curve, more extreme curvatures of the clearance curve can

create significant violations between constraint points. The maxi'um

colistraint violation that can occur between sample points is

approximately

Cv A k (8-1)

where Ak is the difference in curvature between the two curves being

considered, and &R is the constraint range interval. (The approxima-

tion is derived in Appendix 11, based on constant curvature for each

curve over the interval of violation).

5) Trade offs between ride-softness and specified minimmn-

clearance distance may be required to keep the problem dimension down.

The more restrictive curvature limits of the softer ride require a

longer frame length to predict clearance of the same height obstacle.

Longer frames generally require more sample points of all kinds--

unless the sample intervals are increased. But increasing the

interval length increases the likelihood of constraint violations

between sample points. A small percentage of violation %rill be much

more acceptable for a high clearance trajectory than for a low

clearance trajectory.
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6) The feasibility of a real time scheme is dependent upon the

aircraft performance: the speed, acceleration and slope limits. For

example, a missile flying at Mkich 2.5 at sea level (2792 fps) with
acceleration limits of -1 and +3 G's would require curvature limits

of +.000012 and -. 000004 ft 1 . This would correspond to a charac-

teristic frame length estimate of S4,900 feet (for the 1000 ft

obstacle used previously). This long frame length would require a

high dimensional optimization problem for realistic sample point

intervals (probably about 500 ft for the terrain and clearance data).

However, if the acceleration limits are changed to -5 and +15 G's,

with all other data the same, the new estimate for frame length would

be only 24,600 feet since the vehicle would be much more maneuverable.

8.2 Computational Requirements

Some conclusions can be drawn from the computational requirements

of the test programs run on the CD 6600 computer, but it is extremely

difficult to compare these results directly with airborne computer

reqturenents for the following reasons:

1) The test program has many optional features used in the para-

metric studies that would probably not be included in an operational

program. Also, precomputation of many of the matrices used prior to

flight could reduce significantly the inflight computation.

2) A direct linear programming algorithm would probably be used

rather than the complementary problem, which requires more storage

and probably more time.

3) The word length and processor structure of the airborne

computer would be different, so equivalent programs might nm at
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* different speeds on the two computers.

4) Input and output devices would be significantly different

for the two computer systems. This would have a significant effect

on the computational times. However, the use of central processor

times tends to minimize this effect.

With the first two items above tending to offset any increases

in the requirements due to the second two, the CDC 6600 execution

times are some indication of the feasibility of this optiml-path-

spline terrain-following scheme.

8.3 Evaluation of the Framing Structure for an le Missile

It is difficult to draw any conclusions about the real time

feasibility of the optimal-path scheme unless a particular frame

structure is specified. The most rigorous test of the scheme is an

extremely high speed vehicle, since the system must process the

terrain data most rapidly. Therefore, the case of a very high-

speed missile is considered, with a few variations in the framing

structure. If the real time scheme is feasible for this missile it

should certainly be feasible for slower vehicles. The test missile

is the example mentioned in Section 8.1 and travels at Mach 2.S. The

most difficult framing structure for processing corresponds to very

restricted maneuverability of the missile, such as, soft-ride acceler-

ation limits of -1 and +3 G's. Since the optimization problem must

be limited, a frame length slightly shorter than the characteristic

length of 54,900 feet is selected. A 2000-ft control interval is

used, which is considerably longer than the characteristic interval

jJJ II-
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of 324 feet. Even with the longer control interval, the 50,000-ft frm

length, with 25 equally spaced control points and SO-point clearance

constraints, produces a complementary problem of dimension 100. The

complete set of framing parameters is listed in Table 8-1 as

Structure 18. The corresponding optimal path and curvature are sham

in Figure 8-2. .The performance appears to be good despite the

restrictions placed on the framing structure and maneuverability. The

computational times and performance data for the run are listed in

Table 8-2, The "allowable" frame time is that which is required for

the optimization processing to handle the terrain data as rapidly as

the vehicle traverses the terrain. It is computed by dividing the

frame advance distance by the nominal vehicle speed.

The RMS and maximum excess clearance values in the table for

Structure 18 are rather high because of the acceleration limits.

Therefore, the more maneuverable cases of Structures 19 and 20 are

considered. The framing structures are listed in Table 8-1, while

the performance data is in Table 8-2. The RMS and maximun excess

clearance values are reduced substantially for both of the more

maneuverable cases. The slightly longer frame length of Structure 19

shows an improvement in excess clearance over that for Structure 20;

this can also be seen in the plot of the paths shown in Figure 8-3.

Iowever, the shorter advance distance for Structure 19 is borderline

for real time application. The first frame takes slightly more com-

putational time than the allowable frame time. The first frame

always requires more time than the others during a run, because of

Ib

S...... ,-•, -,,.., - - - , - * • *-• •• L=.• -•..... . .. .
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Table 8-1 Framing Structures for Missile Paths

Structure Number Dim. 18 19 20 21

Type of Terrain Derately Rough Smooth
Type____Terraif" T. 364 ft YT137 ft

Type of Ride Soft Hard

Expected Obstacle lit. ft 1000 S00

Charact. Frame Length K-ft 54.9 24.6 24.6 17.4

Frame Length K-ft so 26 24 24

Frame Advance K-ft 24 14 16 12

LIMITS:
CUrvature f" xlO' 4  +.12 *.6 +.6 *.6

-. 04 -. 2 -. 2 -. 2

Acceleration* G's +3 +15 +15 *15
-1 -5 -S -S

Kink** t xlO" .80 ±3.0 ±8.0 ±4.0

Jerk* G's/sec ±5.4 ±54.1 ±54.1 ±27.0

Nr. of Control Pts. 25 26 24 12

Cohplem. Prob. Dim. 100 78 72 36

SAMPLE INTERVALS:
Characteristic .324 1.444 1.444 1.022

Curvature 2 1 1 2

Perforniance %eas. K-ft 1 1 1 2

Clearance Const. 1 1 1 2
Terrain Data '2 2 2 2

PERFORMANCE COEFFS:

cL 0 0 0 0

cQ .1 .1 .1 .1

CM000 0

Figure Number 8-2 8-3 8-3 8-4

For V - 2792 fps

I** Inherent limits from 6, kmin and ýmax

IiI
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Table 8-2 Missile Reference Path Performance U Computational Times

Structure Number 18 19 20 21

Type of Terrain koderately Rough Smooth

Type of Ride Soft Hard

Frame Length (K-ft) 50 26 24 24

Frame Advance (K-ft) 24 14 16 12

Coamplem. Problem Dim. 100 78 72 36

Allowable Frame Time (sec) 8.6 S.0 5.7 4.3

CWIPUTATIONAL TIMES:
(Per Frame)

Max 6.3 5.5 4.5 0,69
Min (sec) 1.3 3.4 2.4 0.46

Average 3.8 4.3 3.2 0.53

Number of Frames 2 4 4 27

EXCESS CLEARANCE (For 321 Sample Points at 226 Pts.
flEIGITS: a - 200 ft) tA=1200ftJ.

eMaX 664 313 384 52

'min (ft) -7 -8 -8 -6

e RMS 292 105 121 9

Figure Number 8-2 8-3 8-3 8-4

the initialization of some of the matrices in the computer routine

used. There is no reason that the matrices could not be initialized

in flight prior to real time operation, to overcome this problem.

The short time for the second frame of Structure 18 appears to

he just very fortuitous, as can be seen by comparison with the

minimum times of the smaller dimensional problems. One more framing
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I
structure is considered for a flight over a different terrain segment.

This second terrain is classified as smooth terrain, since it has a

standard deviation of aT - 137 feet (compared to the *T a 364 feet

of the previous terrain). Structure 21 of Table 8-1 is used in an

cffort to reduce the problem dimension without sacrificing performance.

Both the frame length and the control interval selected are considerably

greater than the corresponding characteristic values. The net result

is a reduction by a factor of one-half in the complementary problem

dimension, while the computational time reduction is considerably more

than one-half, as indicated in Table 8-2. The performance over the

snmoth terrain is excellent, as illustrated in Figure 8-4, where the

optimal path does not differ essentially from the minimum-clearance

curve except in a few short regions. The expected obstacle heights

are based on approximate peak heights of the terrain segments, but

II values of 3cT would be fairly good estimates, as can be observed

from the values in Table 8-1.

Although some sacrifice in following the terrain closely may be

required in some missions, the path optimization scheme appears to be

quite feasible and flexible for real time applications.
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9. CONCLUSIONS AND RECOMENDATIONS

The concept of including an optiml path determination scheIe

into a terrain follower appears to be quite feasible in a modern,

computer-equipped aircraft. It also offers a good deal of flexi-

bility as a programmable control system. These conclusions are

based on the following discussions of the various facets of the

problem.

9.1 Splines and Clearance Paths

Although it is possible to treat both the terrain data and

reference clearance path data as sets of discrete points, computa-

tional flexibility and more realistic path representations can be

obtained through the use of cubic splines. The computation sample

interval need not be restricted to the terrain data intervals if

splines are used for interpolation between data points. The

amrtmt of conruta'ion required to interpolate between data points

is a very small pa.-t of the overall computational requirements.

Interpolation between data points also provides a basis for calcula-

tion of slant-clearance-distance paths, for which the nearest

distance between the clearance and terrain curves is equal to the

specified clearance value. 11Tis calculation gives a more accurate

clearance than measuring a clearance path with the vertical

distance equal to the specified clearance value; however, the slant

procedure is more precise than usually needed. It was found that

for typical terrain segments a simple estimate of points on the

slant clearance path provided a good reference clearance path.

125
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The estimate at any point is based on the local height, slope, and

curvature of the tersain-spline curve.
9.2 0ptimal Path outations

The computation of the optimal path by either quadratic or

linear programing algorithms is far superior to general optimiza-

tion algorithms using penalty functions, primarily on the basis of

computational time. The solution trajectories themselves agree

fairly well, but the penalty function solutions have clearance

constraint violations near terrain peaks. Although three types of

perfonn'nce criteria were analyzed: linear, quadratic, and min-ma;

the trajectories tend to be very constraint bound and rather insen-

sitive to the particular performance measure. Piecing various

constrained arcs together with appropriate transition arcs is the

primary task of the optimization routine. If the programing

problems were always feasible, the simplest performance criterion

would be the most appropriate; the linear criterion and its

resulting linear programming problem might have smaller computational

requirements than the other performance measures. A revised

simplCx algorithm i 114] would he o candidate for solving the linear

lproblem, but Slianklaid'.s algorithum [291 which handles infeasibilities

in the quadratic progranu1ing prollem appears to be the most promis-

ing algorithtm considered.

"The data frame length must be chosen to give adequate predictive

capability to the scheme. 'The frame length deriied from the

Characteristic 'trneuvcr, which is nased on a specified-obstacle-

height and the aircraft acceleration limits, is a good estimate of

"ideal" frame lengit1 for all of the cases considered here.
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A great flexibility is possible in the selection of control

point spacings azd the various sample intervals used for performance

measure and constraint satisfaction. Larger intervals yield smaller

computational requirements, both in time and memory storage, but this

is at the cost of theoretical optimal performance and accuracy. The

control function suffers from lack of flexibility if the control

point spacing is large, and the corresponding trajectory will have

a higher RVIS clearance value than would one with finer control-point

spacing. However, if the control points are too closely spaced,

ride comfort for the pilot will decrease, while tracking errors and

fuel consuzption will increase as the aircraft attempts to follow

the computed optimal path. Also, greater overshoots of the desired

acceleration limits will occur, along with the path overshoots.

The nunber of control points and, hence, the computational require-

ments, can be reduced through a graduated control point spacing,

where the near-frame (close to the aircraft) spacing is fine for

control flexibility and the far frame spacing is coarse to predict

gross positional changes that may be required. The final deter-

mnination would depend upon the particular mission considered.

9.3 Tracker Systenm I'erfornance

The validation of the optimal path schee reluired a realistic

aircraft simulation and a candidate tracker system model. Since

the optimal path was designed to provide a "trackable" path, an

optimal tracker system was not considered necessary, rather, a

simple feedback tracker system was tested. The tracker used inertial

* ! .... *- .* .'
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path information plus two derivatives that won available frm- the

optimal path solutions of data frames with appropriate framing

structure. The tracker performed extremely well, with appratitely a

6-ft RM tracking error and a maximum tracking error of 12 feet,

over a moderately rough terrain under hard-ride conditions

(-1, +2 G's). This corresponded to errors of less than 12t of

the specified minimum-clearance of 100 feet.

9.4 Overall System Performance

The overall performince of the system depends primarily upon

how accurately the terrain data and the aircraft's position relative

to the terrain can be determined. The choice of framing structure

affects the sense of optimality in determining the optimal reference

trajectory. A variety of possible trade offs are possible in an

operational system--trade offs between closeness to the terrain and

cmputational requirements. Performance can be adjusted, depending

upon the particular aircraft and mission, by changing parameter

values in the digital computer. Thus, the system is very flexible.

The overall system was coqmared to that of Greaves [11],

since that system is the most advanced to date. All of the

approaches discussed by Greaves compute slopes and accelerations of

the "ideal" paths using difference equations. These correspond to

parabolic path segments that will not necessarily be joined in a

desirable way; i.e., they will not form a quadratic spline and they

may be disjoint. (Whereas, the cubic spline approach produces

slopes and accelerations for a smooth continuous path). Therefore,
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*. the Creaves path may not be one that the aircraft can fly, and the

system would require a very good (optimal) tracking system. Purther-

Snmore, the acceleration profiles of the optimal paths with the

Greaves' method tend to be more bang-gang in character, since there

are io transition arcs between maxium pullup and pushover arcs.

This also makes his "ideal" path more difficult to track. The

additional structure of the optimal spline paths provides sufficient

predictive information for a very simple feedback tracker system,

which can be optimized by gain selection for a truly nonlinear air-

craft system, rather than through the use of linear approximations.

The sense of optimality of the two systems differs somewhat:

the sense of Greaves system is rather obscure although it emphasizes

the clearances near high terrain areas, while the spline-path

system minimizes a weighted average clearance measure, where the

weights can be directly adjusted in the computer program. Both

systems have a tendency to make paths nearly horizontal at the

peaks, but no strong reason for requiring it was observed. Con-

ceptually, it is possible to add that constraint to either system,

if necessary.

Although the system proposed by Greaves appears to be somewhat

simpler in path processing, it is more complex in the tracking

system. The approach of the optimal-spline-path system is a more

unified approach for the overall system.

9.S Recommendat ions

1) Further studies of the optimal-spline-path terrain following

system should be made to select the best programming algorithm.

IFlo.
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These studies might also include the effects of radar shadowing,
in which the terrain data that is input to the optimization processor

is limited to that available on a direct line of sight. The

optimization algorithm does not change, but the data that it mut

usc is modified from the true terrain values. Thus, the probability

of infeasible programing problems increases.

2) The optimal path generator can be used as a design aid to

provide rapid generation of standard reference trajectories for any

desired terrain segment. These standards can be used to evaluate

proposed controllers and modifications to those controllers.

3) The optimal reference trajectories can be used for frequency

analysis to determine what frequency spectra the flight control

system must be capable of handling during terrain following. The

path optimization processor acts as a low-pass filter to attenuate

the aplitudes of any high frequency terrain components. The

frequency spectrum of the processed path is what the flight control

system must be capable of handling. The framing structure used in

determining the reference path will affect the frequency content of

the path. The characteristics of an existing flight-control system

can be used to determine a compatible frame structure for the

terrain following controller, or from desired flight profiles, the

framing structure and corresponding flight-control system require-

ments can be developed.

4) The concepts of the optimal-phth follower can be extended

to terrain avoidance. If only lateral motion is involved in the
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terrain avoidance mode (with an altitude hold), the extension

merely involves a transfer of the problem from the vertical plane

to a horizontal plane. The performance measure would be referenced

to a navigation path, valley, or ridge line that the vehicle is

attempting to follow. If a combination of terrain-avoidance and

terrain-following is desired, the optimization problem will, at

least, double in size. Furthermore, linearization of the coupling

effects between lateral and vertical motion relative to the

terrain must be employed.

5) The spline-tracker concept discussed in Chapter 7 has

broader applications than merely to that of an optimal-path follower.

A reference spline path can be generated in a great variety of

ways. For example, the spline path could be a navigation track pass-

ing through specified "way points." In that case, the lateral flight

control system would track the navigation path, which would be

defined by a fairly small set of discrete values, and yet represent

a very smooth path. A great variety of maneuvers coul'l be accom-

plished in a similar manner by merely specifying certain points

on a three-dimensional path as guidance parameters. The control

system would then track a bi-variant spline fit through the points.

Techniques of this type would be quite useful in digital command-

guidance systems.



APPEI[X A

Ot'PIMiZATION PROBLI-N EQUATION DERIVATIONS

The first part of this Appendix contains a derivation of the

equations for the path state variables as affine functions of the

curvature-control-point values. Then, the cost gradients with res-

pect to the control-point values are derived. (The gradients are

used only in the general optimization routine.) From the path state

relationships, the equations for the quadratic programming problem

and the corresponding complementary problem are derived.

A.1 Path State Equations

Ihe path sta-.e vwriraoles, as described by differential equations,

are the path height h and the slope s, while the independent

variable is range R, and the control function is the curvature k.

The h, s, and k variables for the cubic spline path are functiop5 of

the set of discrete control values k.-

h'(R;k) -- (R~kn) = s(R;kn) (A-i)

s'(R;kn) n - (R;kn) = k(R;kn) (A-)

k(R;kn) = (1-o)kj + Lki+1 = ki + o(ki+1 -ki) (A-3)

for Re [Ri, Ri+i], where the "normalized" range increment is

R-R.
-R (A-4)

over the control interval

.- = 1,-R (A-5)

132
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1he kink, p, can also be considered as a state variable, but it is

defined directly as a function of the control set k .1
Pi =k - (A-6)-k )

(hie can convert the two differential equation relationships into

simple functions of the k1, by integration. Note that on the hori-

zontal range interval Ax,

do =- dR (A-7)"1 A

%hen Eq. (A-3) is substituted into Eq. (A-2) and the resulting

equation is integrated over the normalized interval [0,o], in terms

ot the dznm)y variable z, the result is

s(R) s(Ri) + Jj If [ki + z(k-+i-ki)] dz

Ai [kia+ } Ak.o-)

where

Aki k -kk (A-9)

At the end of the control interval, where o=l,

sR;= s( I) 3 (ki+II); (A-10)

Recursive u.se of this equation for i=O, 1, 2, ... , n yields

1n-1
s(H 1) = s(R 0 ) + X A. (ki1k 1l) (A-11)

i-0

"Tltus for ,t 11[ •+ I

P . '. A (k.- A],

"Ai-0 3i+li) Ak-a ] (A-12)

2 i -
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Sindlarly, the height equation can be integrated using Eq. (A-8)

o ~1 2

h(R) - h(Ri) + i f0Y [s(Ri) + A kiz+ 2Akiz2)]dz

A-2 A. 2

h(Ri) + Ais(Ri)a + 1-ki2 + k. (A-13)

and for the full interval (o=l)
A2

h(Ri+l) = h(Ri) + Ais(Ri) + --- (2ki+ki+l) (A-14)

Wien IkLs. (A--14) and (A-10) are used recursively, for i=0, 1,

2, ... ,n,
n-l i M-1

h (Rn h h(R0 + E An[s0R0)+ E- A. i(k.+ki~)
,a•O i=0

n- i 2
+ • n .[2k i +ki+1 ]

i-0 '

n-1 - -

h(R0 ) + ( E zm) s(Ro) + - zn-i rn-I IM-= 0 M=0 i-OM ,1

+ 1 n-]1.2
i[2ki+ki+l]=. (A-15)

The equation for Rc[RnRn+l] is determined from Eqs. (A-13),

(A,-11) and (A-15) n-I n1 -ilm-1

Iih(R) = h(RO) + z A nm)RO) + f F, i: !•iAi
m=0 m=0 i=.

1 n-I 2(0 kii l 1 n-1

+ 7; A. (2ki+ki ' + Ans(Ro) + I E A Ai(. -i+ki+l)c

+ -Ai F[-uk+ko~ o' (A-16)

II
- !
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Finally, the excess clearance distance at R is also a function of

the set of ki

e e(R;k) - h(R;ki) - c(R) (A-17)

Where c is the minimum-clearance curve height.

A.2 Cost Gradients

The cost function is

N1Np 2 Z•

: a: (Qnn + Lnen T Pn )M (A-18)
n=l

where

T - if •0 ( 9

and Np is the total number of points in the performance sample set.

The partial derivative of en w•th respect to the ith control point

value, ki, is

Zen ahn
a h (A-20)

The cost gradient is

-- E 1 (A-2])
a nl -fen 37 n-l n i

where

, a 2(%+TPn)en*L, (A-22)

an

I
I _________ _______ ____

S_ __1 I I I i_ I " i I -I - "1 ... I. - - - - I " - w -
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qie, lie partial derivatives of Dq. (A-15) are taken with respect to

the ki

0 jor Rn• [Ro,Ri_l)

•2

1[ ) (3---e2o)+(l-o) 3

ahn ah(n,ki) =

-s----- - ,for Rn [qi ,Ri +1)
1 1

-- i1 (R3 -'" + 2 A i-I

AA AA
i'or Pnc[%m,Rm+1) (A-23)

where m i +1.

A..3 (uadratic Propramminv Problem ,, ti'n.ar..

In the following develo.pment, two distinct types of indices

will be used: sample point superscripts and control point subscripts.

The sample points can be used for conatraint enforcement as well as

performance measurement. The control points are the specifici

points where curvatu re control values are selected. The state variable

values nt ilin rnr.trnl pnints rnn 1F- gennrit& ,r.-, by .nc

(4-10) aic (1\-14), whil the sampte point values are deten.ined

from the appropriate control point values by Eqs. 'A-12) and (A-13).

"These equations ]cad to equation.,' of tl'e foll(owing forms.

11t Nk n. n

j"= : Ub + Y (A-24)
i-O i
N1:

x) Il (A-25.)
J s "- 5 (i J

S~i=0

I �

-- 'r L~~i .,W~." d~{ ,4S flts~i.,,hh't ~,it1
tt<..r~a . tM t4LMh~l.MJ f~fl~i~t4't~'~" WU.
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Nk

S= a amiki 4 yr (A-26)
i=0
N,

sm m k, + pf (A-27)i=0 mk

By coinparing the above four equations with Eqs. (A-8) and (A-13),

one can obtain recursive relations for the coefficierts that are

functions only of incremental range from the last control point 4t

P, to the sample point at W", G' (onR M)/A.

n .+ n 6 + 2 _ i ) 2 [ _ n) i o n m l i ]
n 

i

=i m. A m m - 6 (an)2  6 i. (A-28)

n + i1 n (A-29'

n n (0n)2 2 ( nA-f3
I-) =- r * • A [(on __-_ mi ml i

In =n i -- 
0 n4li

P =Pm s0 (A-31)

where 6 is the Kronecker delta:

SInfor m i A 36mi = , for m j

Now the inequality constraint equations cmn be developed, where

the zero indices indicate specified initial condition valves.

Nkn hn n n k n ( -
c = h - c = 1 a . •.' a i k + '(n - C > 0 ( A-- n)

i=1 i x 00-

or
Nk

- nk n n n (An3)
"P i 0 k o + Y -c
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Also, curvature constraints must be included:

k. <k > 0 ,for iET (A-35)a - Max k

ki >k mill , for iclk (A-36)

11 is the index set of the control points; similarly %C) s d

and ¶V are the index sets of the sample points for constraints

on minimum-clearance, climb slope, dive, and maximtn-clearance (for

min-max), and for the performance measure, respectively.

In telms of the control points, the climb constraints are

k
s= n k + Pk + 0 < > 0 , for nc% (A-37)

Si i 0 max s

Sand the dive constraints are

Sm , foi no¶d (A-38)

When the mili-max criterion is used, the following additional con-

straints are imposed, where m is a parameter value to be determined

by the optimization.

e < m , for nc (A-39)

If direct kink constraints are impo-ed, they are

Mnin 'ln -I'max , for nclk (A-40)

'Itt eqlual ioe•s fr c, s ard p can be written in the following

vector-matrix fon,, with 1: an N4k-dimensional vector,

11e 4- 1 . (A-41)

s WS I'! (A-42)

Ph =(A-43)
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where, for -P, (i-p,c or m); c¶.j, (j=s or d); and r, qc¶k

Ei q ] , an Ni x Nk matrix (A-44)

Si = [rq 3 , an N. x N, matrix (A-45)

F- a 0 + , an Ni vector (A-46)

f" = 091k0, an Nj vector (A-47)

P q 'I , an 1k x N,. matrix (A-48)

The elements of P are

'([ /•- (A -•(r-l)q- rq)(- 9
I

The following combined construint cquation (A-S0) can be expanded

to include the possibility of mbn-max upper-bound-clearance

constraints.

C' K < 1) (A-S0)

C is an (N 1 l" ) x (Nc + NM + 4Nk + Ns + Nd) matrix if 2 Nk kink

constraints are enforced and 1) its an (Nc + N + 4Nk + N + Nd)

vector. In partitioned form the equation is

].1  i i- i - m 1

-1. M F 1i

C C

kk

p (A-Si)
-1k 0 !- k k in ( 1

-Sd O.l; 0 m _• in + IVdl ql

:4 •Jmax s
- max

-1' ] 4, Pmin-1•" S.15..•-
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where IM 1 if Nm 0, otherwise Im = 0; and l, is an Ni vector with

unit elements, while Ii is an indentity matrit of dimension N..

Similarly the performance function can be written in matrix

form, where q is a diagonal matrix with the Qn values as the diagonal

elements. (if all the Qn are equal Q can be considered a scalar).

The e and r are vectors with en and Ln as elements, for ncTP,

J e'Qe + L'c + ni (A-52)

The form of Eq. (A-41) can be substituted for e into Eq. (A-52).

1 K'E'QJ;K + Fl + V']EK + m + 1I ['F CA-53)

The last two terms are invariant with respect to the parameters K

and ni, so the set of K and m values that minimize J also maximize F.

1 K'E'qEK- [F'ý+F']EK - m

1
- K'BK + A' - m (A-54)

where

B : E'QE (A-55)

A : -[F'• + F'] (A-56)

A. 4 Complementary Problem IEquations

The non-negativity constraints on the variables in the Lemke

formulation of the complementary problem require a "biased" control

parameter set of the fonii in lkj. (A-57)

x -=. - k > 0 iETlk (A-57)X 1 I U1U -

Thus, the excess clearance vector for the performance measure sample

set, ¶I}, is N dimensional:

el) =IfK + F = (X+ R ) + Fp

(A-58)

-- = + I)

b.I
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where
DP EP I +in k F) (A-SO)

The constraint set of IA. (A-3S) can be expressed in terms of

x, but the non-negativity of x replaces the lower-bound constraint

on k.

E -- (E k +

- (S .k + Wd)-nmin

Ss 0 -(SsjkkmIn + Fs) _mx
I k -l ,k -k )I

S 0

p 'pmax - MiL) 0 -4kPmin + Pikkmin

which can be written in the form of Eq1. (A-61)

S > I(A-61)

Ibis inequality is converted to an equality with a (NI+Nc+3Nk

+NdN) dimenion• a ctor, u.

u = G I X I I > - (A-62)I1|

The Jerrlonrmiace measure can also 1e exprcs.;ed in terms of the x

variable vector. For the augmented variable vector x' = [x m],

z = i,' + 1- x'qx (A-63)
2

Compare this w iti l.q. (A-52), ;aftcr :;uostituting fro'' Eq. (A-S)

2 X, IIQI X + JE f:Q+ P(_f)ý4 ESI 11' + III
3- p2 i:'Q ii " ii-k

+ 1 1,2 ,jQ_ + 111. -
2 ; s>i 1) P14 1) + pL Di ink+( (2 'Q P (A-04)
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The following matrices are required

Q ] (A-6S) '

L (A-66)

Lm J

where

D)p -[LA kin+ FJP] (A-67)

Now upon application of the Kuhn-Tucker conditions, the

Lemke complementary problem arises, with non-negative multipliers

v and y (dual variables).[v f [lI
I= [ - + (A-68)

Luj LG I j iZ L"1
The large matrix and vector are

M - C, (A-69)
L_

q [ (A-70)

The partitioned forms of these matrices are shown in Eqs.

(A-71) and (A-72), with the dimensions of each partition indicated

adj acent to the matrix.

I

I" '4"
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N k In Ný N N k Nd N5  "k N k

Nk LPQE~ 0 E' c' k -Sd S, P, -p

1 0 0 -1 0 0 0 0 0 0

N I~j 0 0 0 0 0 0 0

N c :c 0 0 0 0 0 0 0 0
M Nk 'Ik 0 0 0 0 o 0 0 (A-71)

Nd Sj 0 0 0 0 0 0 0 0

N IS ( () 0 0 0 0 0

N [P 0 0 o 0 0 0 0

N k 1kL 0 0 0 0 0 0 0 0

r .(?q) +p N k

1 . lor0

m ~N 0
C-4 m~ki n 1)c

(j (~i~k11~~4 N ~(A-72)

(K -k )4Nni\m x 111-kl

S4 -(S i.+w )+-Is~mL N

I ~ ~ -1 ikmx~ kk~ Ni~

4nunx -fL'mint



APPENDIX B

CHARACTERISTIC NtANElrER FRAME LENGTH ESTDIATE

The characteristic maneuver was defined in Seztion 4.2, and is

shown in Figure B-1.

n

S~R

[t R R R

Figure B- 1 Characteristic Mianeuver

.Specified for the maneuver arc

k i - minim3un crvature

- maximum curvaturc

I! - maximnum eNj)ected obstacle height.
"The characteristic frame length, Fc, is the total range distance

required by the maneuver and is determined after computing the

144
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characteristic range interval, A . Tlhle slope and height differential

equations are integrated piece-wise to the mid range, Rc. The total

frame length is twice the value of Rc

ARC 1 R0 0 and R A
0 1 c 'ýma R(Bl"•

For RE [R0 ,R1], k(R) = k (B-1)

R R kax2 3k R
Rmax r R 3R maxRS(R) fRS(R)dr= fR --A dr A [310 -0 (B-3)

0 0 c c c_Ra 3 _ max

A
S (x c (B-4)

and 1- ,2

h6 (B-S)

ARC 2

R A and R', 2Ac

For RL[R1 ,Z-,], k = k (B-6)

S(R) = S(R 1 ) + k k dr max c + k -ax(RAc) (B-7)
iriax 2 mx

9

=c max c max c 2R (B-8)
h(R) = h(R 1 )+fR (r---)dr 6 + IA

P.iax 2 62 c2)

3

S(R 2 ) = (B-9)

(1W ka7 " (B-10)

ARC 3
1',2 = 2A and IP3 3Ac

(1 -2,, [ +For } [R2,R3] I.kmR--la + • (tnin-lrnax) (b-i1)
C

IL I .1
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= k 3A+(mxr-2&9R (ý-mx (r2

S(R) S(94f 1k2A + + 2A c C)k)2A

R(k. R,=

Rk 3 ~ + + min kmax) 2

h (R) h i(R2) + fR +k(r-24 c 2A [(r-2a C) ]irdr
2 c

= NlJag~c+ k[1ý6(R-2A) + 1(R-2A

6A ~ c

8 (R 3 ) = (2kmý + ~-k-%(B-14)

ARC 4
n

R3 =3& and Rc (3+__f)t, where ncis c~o be determdined.

For Rc[R 31~ It l, k(R) ýmn(B-16)

8 R1
3(R) 8( 3) + fR k".1ndr = (ZkL+j-k.) A +k. R3) (-

Il(R) H (%) f ( k. )A + R . (r-3A )Ydr

=(k +i!] 4A (21 a+'k il)A (R-3Amax 6min) c 'ni2 M c c
1 2B18

+. .2k i ' A
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S(R)= [2kmax + 1(n, c)hml" (B-19)
1 2 2

h(R) = [( 3±n )k + 1 (4+6nc+3nc 22in (B-20)

Now the boundary conditions can be app]ied to determine

A and n.
C C,

S(Rc) = 0 (B-21)

h(R c) = II (B-22)

From I-qs. (B-19) -ind (B-21)
k

1 (4 _UI + 1) (B-23)

k.

Since kn f O,nc wi11 he a positive nunber when R, -

[lie central range value is
n F-

R = (3-A - (B-24)

Thus, from (B-23) and (B-24)

Fc = Ic (5 - 4--a) (B-25)
mn

AlIl that remains is to determine A_ from Fqs. (B-20), (B-22) and

c (3+11C) I-, max 04~ +On C+.-) iC)k min

(1--226)
48k (I- Imax)+k

t~ (+n~max +( mai

2411 (F- 27)
48k jax (1- M Ix) +],1 in

LI



LXAkPLES:
I. 1--rcr-aft. Soft Ride: kmin 10 ft-I, .008 .i 100mu .. . ft x .00008, tt = 1000 ft

6 $ = 834 ft

Fc = 374c = 30,800 ft

nlc = 31

2. Aircraft Hard Ride: kmin -. 00004, km .00008, Ht 1000 ft

A = 1440 ft

F = 13Ac 18,800 ft

CII = 7lc 7

3. Missile Soft R.ide: -.. 000004, kmax .000012, H 1000 ft

A= .324 ft

Fc =176c 54,900 ft
nl = 11

4. Missile hard Ride: kmin -. 00002, 1(x .00006, H 1000 ft

A = 1444 ft
c 17c 24,600 ft

i = 11
C

5. Missile Hard Ride over Smooth Terrain:

c k i -. f n • .0000 , 1 500 ft

Ac = 1022 ft

lc = 17A c 17,400 ft

lI

SC

fl = 1

4- ~ fJ



APPENDIX C

CI iRVAT"I W' RI IIAl I O)N'1IPS

To d.ItcflhIim' I lie rel1at ionshiip between the path curvatUreC and

the nonnal accclcraticin (normal to the path), consider height to be

a ftmction of rmnge, i-Aich is in turn a ftrction of time.

b h(R(t)) (C-1)

t. dh d dhi(-1

Nit byx tliw cliAn ritiR c

dR - dt c

I N

Ci-1 1 - Veloci tk mif2S d Accclcratiojiu,

149
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:rom Figure C-1 it c,-- be seen that

A 0v 3os' (C-S)

and

aN=h coY R Ps iny---.- (C-6)N V

-,Therefore

k = -- -. aN (C-7)

V .Cos 'r v'-co.< 'V

or
aN

3N c"Y (C-8)
v

'he instantaneous radius of curvature, rc, is equal

to the radias of a circle that coincides with an infinitesimal.

segment of: the path.

h' " (R.he)

Figure C-2 Radius of Curvature

'T'he coordinates of the path point, for fixed center (Rc,hj)

and fixed. radial iength, rc, are

* ."/ --

,..•... ÷ ,:: o ,.... :,.: i. -f" i,•:""'r";'"""'i""''" i"•.... i•""

- - - - - -- - - - - - - - - - - - - - - -* . - . - - - - - - - - - - - - - n a - n
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K = r. siny (C- 9)
R Rc rsilVR

11 = hc r cosy (C-10)

for

-1 an-] (Y-] (C-11)

Ite slope is

tary (C-1.2)

whi!e its der-vative is

" dh 2 dy C-3(I _ - s e c y ( C

""l0e diff'erential of J.1. (C-9)canhe solved for

(IyI
* - b (C-14)

C

Thus, the relationship between the curvature and radius of

curvature is
i 7 see5y (C-IS5)k = -

r C
* 

S

- ----- - ~ - ~ - --

-~ - ' -- --- - ---* - * -* -* -r. '.- *r.-~- -,V



APPENDIX D

DTFECC-SLePt" SPLINE FITTINC WnIlD

The non-dimensional range variable is

O(x) A (x-xi)/ai (D-1)

where the dimensional range increment is

ai pxi -xi (D-2)

MDie ratio of successive increments is
a. (D-3)

-i+1

and the change in dependent variable over an incenment is

Yi -Yi+l "Yi (D-4)

The cubic spline and its first two derivatives can then be written

ia

y(x) = t [ 213 +6 +C.o3  (D-7)

2 = -2y' (x) =ii [A. + 2Bio + 3Co](D-6)

t ~a~1 [ 1B 1 C ()7
1y" t (x) - 24IB+6C] 07

a.1

Continuity at the laiot where oa = 0 and oc = 1 requires

y. v. + A1  + '. + C. (D-8)
• 1+1 " - 1 l" "

YyiqI 1 1 [Ai + 2Bi + 3C.] (D-9)
a 1a

YB+- - I [2gi + 6Ci] (D-10)
aj +1 a i

1.qs. (11-8) and (])-9) can be rewritten as a system of two simul-

tancous equal ions1:

1 152
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1 1 ' 'B Y . -A . Y . Y ' aL 7i=[JA2C 1~ = ~0-l_ J . ~ i (Y' i+1 i

Mhen this system is solved

=B 3 [ ,ii3Y -a (2>y"+y

C -[2 1] 1 LA i+rA] = -2Y i+a i(Y' i+Y' +])j

the expressions for Bi, C. and B1 can t)c substituted i-to Eq.
(V)-+O

2211i [3Yi,.l-ai.,l(2y'ji+Yi+)1=2[3Y -ai(2Y'.-+,v'. '

i+I+ i Yi+i-

-6Y +3a (y'i+y),] (D-13)

or

1 ij+1(+li)Yi+1 Ijy'+ 2  3(= - + )- (D-14)

-a+1

IThen the complete set of equations for all the unlou..i: Y. czn be

written

2(1+I1 3) I. .0 y '2

1 2(1+1I.) 112 0 Y'3

0 ] 2(+113) 1!3 0Y

0 2(1-1 4 ) 114 (1

... o 2(1-.11 1 ) 1 i

J:i equal to 
'0

S- 7~b
_J
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S3(E +11 E2)-y'

,3(Z2+l123z

3 ( 34+[J)

3 (En-2+II E-•nI -

where

r.. A (D-16)
E -

a.

Now if a procedure similar to that giver, in Sectior ,.? is followed

to bi-diagonalize the above matrix, sidmle recursive equations can

pbe derived: 1) Divide the first equation by the first coefficieat.

2) Subtract it from the second equvtion, then divide the resulting

cquation by the first non-zero coeffkcient. 3) Repeat the process

of step 2 for each successive pair of equations, until the result

is in the form

0 1 C3  0 13 ' W3

0 1 c 4  ( ,14 W44

i °-

0 ... n ... o 2rcn-2 , -2L~~_ 0 '1]_l, (D-17

_. ~ ~ ~ ~ ~ ~ - n -oj n ., , .•. . .". ....



where

and

W, (D- 19)

for iP1, 2, .. ,n-21 the forward recursion equations are

C 1 4  N$~ (D-20)

3 (E +11 Y )'j -W.

I Wi~ (21c (P3-21)
j1 2111

I I inally, the 1)ackward recursion equations yield,

Ffor i =n-l, n-2, ... , 2

V ~(D-22)t

IAll da~ta necc-ss=r to comppute the spline or its- deri..tivcý at

F any point, uc[0,l}, are now available:

F(G Y 2' (3-2a)[y 1 4 1-y13

1 2 3, 3 ( 2 y'~la

F ~+[(10o '0a Jyi+0 -c (yPa.0-23)&

Iy (-) Nki mo)[yj'-y 1] + 1(1 -4cit3o 2 )y' +(32 -20WY' .+- (D-24)

I ~a. 2 +11(1-5

-12

IT  - >IY l -2-l ,i+ l~

: -I
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Equal Intervals

It is interesting to note the special form of Eq. (D-15) when

the spline intervals are all equal (Hi = 1).

4 1 0 ... Fyt2 3(Z 1 +x2 )-y' 1

1 4 1 0 y"3 3(E 2+z3 )

o 4 1 0 Y4 3(E3+ 4)

...0 1 4 1:."

0 1 4 1 3 (En3 ( n 2)

" 4 _ 13-_ (3(n-2+Ln-l)-Y'n_ (D-27)

Mhe correspondinig recursion equations (D-20) and (D-21) become,

for i=l, 2, ... , n-2:

1 .t•-. +-ci(D-z8)

W.+ 3- i rcl- 1i (D)-29)
1+

Ahlberg fl. pg 16] shows that a second order difference

equation ca b)e used as an alternate method of generating the

c. and Wi coefficients for the equal interval case.

di = 4dil-di-2 for i=2, 3,..., n-2 (D-30)

0d =1 (D-31)

d1 =4 (D-32)

L* , t . .. • . . ...I
, - ; ...- , .. . . . - . . . . .. ..
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For i=l, 2, ... , n-2

di-c- (D-33)

I and iP)-W (D-34)

IWi~ - __.

i+1

with WI y'l.

AMI



APPENDIX E

OFFSET-LOOP-POINT REJECION NEIIUD

When the instantaneous radius of curvature is less than the

offset distance, the offset curve will have a loop as shown in

Figure E-1.
offset

(z , ly) cl e

S~(zr2 'Yr2)

/ (zc,Yc)

crossover point

terrain curve

rejection range

Figure E-1 Offset Loop

Each point on the terrain curve, (R,T), corresponds to a

point on the offset curve, (z,y). Since a smooth clearance curve

is desired; the portionn of the nffset- -Ilre near ÷tc cu.sps and 4

the crossover point should not be used for points on the clearance

curve. One possible metnod for selecting clearance curve points

near a loop is to establish a rejection range, as indicated in the

figure by points (,r)• and (Zr ,yr ). These points could be

located such that they are some prescribed percentage of the inter-

vals ['2,zc] and [zc, Z9] The clearance curie could then be fit

158



i
1S9

through (zrlyrl), (Zr2,Yr) and other points outside the rejection

range. The proposed rejection procedure is outlined below.

Rejection Procedure

1. Determine if an offset loop is present either by

zi+1 z. when R > Ri., or
1 Pi i

dz @3k
-1- -'- <0 (1E-1)

s ' +1
for

o ncosy (E-3)

and

s tany (E-3)

"where n is the offset distance, s is the terrain slope, k is the

curvature, and y is the path angle.

2. Compute the cusp points using a binary chop method.

3. Compute the crossover point, lying between the two cusps,

by a Newton-Raphson two-dimensional search, by moving two points

together, startin., from the cusp points.

4. Select the appropriate distances between the cusp points and

the crossover point as the rejection interval limits (30% of the

distance from crossover tu cusp worked reasonably well).

-•• • .. . _ . . . - .... • .a ., ~ t



APPFENIX F

SLANT CLEARANCE ESTBITE

The clearance estimate derived here is a "local" one, in that
A

only the properties of the terrain curve at a single point, T, are
I

used. The radius of curvature, r, is assumed to be constant in the

immediate vicinity of the point. Two cases are considered: those

of positive and negative terrain curvature.

F.1 Positive Curvature

r-n, I
r-nj

is

Y/

T

Figure F-1 Positive Curvature Clearance Estimate

The point C is the instantaneous center of curvature for the

arc, and S represents the esti.mated noint thnt has a sc-nt clearance

distance of n from the terrain curve (as measured along the normal).

The vertical clearance distance of the point S is C v=(n+). Frcm
V

the cosine law for the triangle CST

2 2(r-n) C v + r - 2ICV cosy (F-l)

160
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This expression can be solved for Cv by the quadratic formula.

2 2
Cv r cosy ±V (r cosy) - n(2r-n) (F-2)

But

e n cosy (F-3)

so

CV r (.~ 2_n(2r-n) (F-4)
V n (r

This estimate should only be used if r > n, otherwise tho normal

offset curve has a loop, and estimates about point T are unreliable.

Therefore

-n(2r-n) < 0 (F-5)

and

n n

when the radical is real. So there aru two positive roots, with

the larger one corresponding to point ý shown in Figure F-1. The

desired root is
_rO a ( 2

Cv- -n- () -n(2r-n) (F-6)

F.2 Negative Curvatur,..

When the path curvature is negative the radius of curvature

also has a negative sign

' 1 sCc 3y (F-7)

'1V*,ZWý A
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Thus, with r < 0, and C v n*6

S[

. /
/

Figure F-2 Negative Curvature Clearance Estimate

Once again, the cosine law for triangle CST yields

(n-r)z = C + r 2 
- 2C v(-r)cos({-y) (F-8)

or
(r-n)2 = CV2 + r 2 

- 2CvrcOsy 
(F-9)

This equation is exactly the same as Eq. (F-i) so the solutions

are again

C 0 -±/(r±-)2 -n(2r-n) (F-4)CV V n (-4

However, by convention, this time r is negative; for the desired

positive root, now the positive sign must be chosen,

Since now

-n(2r-n) > 0 (F-10) A

Iro•re 2 -n(2r-n) (F-11)

while the negative root corresponds to in Figure F-2.

.I
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Finally, we can solve for the clearance difference, ., in a

general expression

-n) sgn(r) r- 2 -n(2r-n)

(-n n) - sgn(r) (-rn- - n) 2 2r(n-) (F-12)

In general, the total vertical clearance is

C -- sgnfr) - n) 2 -2r(n-O) (F-13)Cv F



APPENDIX G

AIRCRAFT SIMULATION

This Appendi_ contains the equations used iii the aircraft

simulation. Most of the symbols used in this Appendix are not used

elsewhere in the thesis, therefore the symbols are defined below.

CD Total drag coefficient

CDo Trim drag coefficient

CD PPartial derivative of the drag coefficient with respect to

various "x" variables

C, Toh al lift coefficient

CL Triin lift coefficient
0

C Partial derivative of the lift coefficient with respect
L

to various "x" variables

C Total moment coefficicnt
mK

Cm Trim moment coefficient
0

Cnx Par-tial derivative of the moment coefficient with respect

to various "x" variables

D Drag [
F Thrust

S..L..... a
y
L Lift

M Moment, in pitch, about the ai-craft center of gravity

fT Macb rtrnber

P. ~horizontal range I-

S uSm acoý reference area

V Jutal velocil)y magnitude

164
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a Speed of sound

E; Distance from aircraft center of gravity to thrust line

F Aircraft reference chord length

e.g. Center of gravity of the aircraft

d Specific drag force

I Specific thrust force

g Specific gravitational force

h Altitude

Ik Path curature

1 Specific lift force

n Mass of aircraft

q Pitching rate with respect to time (positive-nose up)

s Path slope

u (:omponent of velocity along the longirudinal (x)

stability axis

w Compoient of velocity along the nonnal (z) stability axis

(positive downward)

x longitudinal stability coordinate

x State variable vector

z Normial stab ility coordinate (positcive downward)

Pt. wiiicates a change from the reference condition

a Angle of attack

a Trim angle of attack

y 11 ight -path ngile

Yo Ang.,-le of x stability axis from the horizontal

*16c Cojimiand signial to longitudinal flight :ontrollcr

* I
nfl . ... a - .•
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6s Stabilator (pitch control surface) deflection angle

(positive, trailing edge down)

6 SAS Stabilator input sigaal from stability augmentation system

(SAS)

P Atmnospheric density
e Pitch angle

E Thrust alignment angle

G. 1 General Aircraft Equations of Motion

The seven-dimensional state variable vector is

x= [u, w, 0, q, h, 6SAS' 6s] (G-1)

The stability axis system is fixed with respect to the aircraft

a, shown in Figure G-1. It coincides with the trim, or steady-

state, wiiid axis systeii,.

longitu•lnal

LLU

D..

-- ---

s z

Figure G-1 Stability Axis System

- ~ -
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Nunnal]y , 0= 0 for (ie refereince condition. The equations of motionwith respect to time arC

R IICos -0 + w sino 
(;-2)

4-f + -d -q(v

(G-3)
w ~q u (G-4)

o, 
(G-5)

9= + 
(G-6)A = -sillo - w coso 
(G-7)

'•sS. = CM "l - 6SAS 
(G-8)

Cs .(6SAS + 6) ()9)
whern S and Cs art, WllStants and

f COSy In C O 
( - e

].• ~ (0-11.)
M i 

II

x = ,C) Sill
(G-13)

Z CVS0 

(G-14)
-- CA V C ] "& C J\ V C J( C- i S )

("AV CAD'ZI

a;d the aeroydyrianic coefficients are

CA So 
(C-17)

0(0-38)

CA 

8)*--u- A ~ n



168

CL -CL + CLAa + C le + CL6 A6s (G-19)

+ C C Cn t + (G-20)SCD a +4 CD

Cm Z C+C m Aa+÷ F1 + C r',66s 4- (C q4+C M.) (G-21)
1110~~ Q 7 q -+a

These additional relationships also appi7:

v2 =u 2 +w 2  (G-22)

A -= tan 1 w (G-23)

a = a + Aa (G-24)

Y 0 - a° (G-25)

For this problem the atmospheric density, pop and Mach number

are assumed constant for the flight. Note also, that a 0is

constant, but y is time varying. Furthermore,
0

a (G-26)

The time differential equations can be converted to range

dependence by multiplication by the factor

t: dt _ 1 (I-27)

hllus

x t' x (G-28)

The path slope is

S 7t (6.29)

and the curvature of the pa.th is

d2h = (t it" -2 -1 (G-30)
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G.2 Normalization

The variables were normalize] for computation according to the

following system;

I VII = 1117.1 fps (Mach I at Sea Level)

1 DU = 2000 ft

I TU- 1 Db,_ ).79035 sec

VUVIA = I =u 623.9562096 fps 2 =19.3955924 Gs

G.3 F-4C Aircraft Data (from Reference 12)

Mach .8 at Sea Level ýV = 894 fis)

°= .3 6 . 3 c

CLo = .06, Co = .0180

S 3.3 , C .08 " .28 V

C 0. ,0o . , c.04
C 34 C 0 (not = .49

LO D given)' In,
0 0j5 S S

C •-2.3
jrq

S = 5.25°

S ý 53( ft.

=, 38,925 1 = 1209."78 slug

b1 =t 6.2 ft

c - 10.04 ft

1 122,1 9 . slug :t-2
Y



APPEPFIX Ii

CONS"MAINF VIOLATIONS BErW-F£N SNNTL !E P•3INS

'There IMre no curvature violations between sample points, because

the curvature is a linear spliie. Neither are there any kink viola-
" '; [ tions, since the kink is always constant over each sample interval.

thrvewr, there can be clearance and slop~e constraint violations°

.- Ihe maxinum clearance- const~raint violation is ilIl~strated in

::: t"Figur'e H-1.

reference
h-A •Spath h

clearance

IL K R

Figure H-1 M5aximmir Clearance-Constraint. Violation

The maxinn2z violation occurs for a ,xbimi•, pull-up path directly
above a )niUJimn curvature terrain peak. w•hexi the cleai- -ice curve

Ihas the same curvature as the terra-n curve, the equations for the

path and clearance curve over the interval of violation, re[OA],

are
1,(r) = h. + sir + 4-. klar 2 (11-1)

c(J) _'i 4 di. + 2i)

170f

41"g. k5 4 ywt, 'iItVi ry fir-, "Al -F[c0r141 1v1 rIIA*M-.
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Since the excess clearance is

e(r) = h(r) - c(r) (H-3)

and

him = ci 01-4)

hi+1 c i+1 (H-5)

Thus
r2

e(r) (s. - di)r +T-2 Naxk i) 01-6)
1 min

But at r=A, Fqs. (11-1) and (11-2) become

hi+1 . ½ A2 21-7)

1 i i max

hi = hi + d ½A 1 1 02-8)

1+I n

Th.e difference between these two equations is divided b, ,

to yield
si- d - [kmax- ] in-9

Ilien from Iiqs. (H1-6) and (1H-9)

C(r) =1 rA) (kmax ) (H-I0)
m ln

'Ihe extreme value -f e occurs when

0 - e (2r - )(k _ 1,t-l

or

(r %a13

r* 1= -. (1-12)F

'Ilie maximum viol~ation is

r (
evr* ()r1i")

fib.ýr 1 Av +ff (kf 111VIt4JII
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If there are slope constraints active on the interval of violation,

the violation will have an even smaller bound than that of Eq. (1-14).

In this case, the curvature of the path cannot remain at a maxinmu-

value over the entire interval without violating the slope constraint

at one end of the interval.

A Pound ojt the maximin slope-constraint violation can ýe

determined fron the geometry of Figure 11-2.

slope of s curve

kSmaax

S Sv slope of s curve

[, _ S curve

RR

Figure H-2 Maxihunm Slope-Constraint Violati(mo

over the interval of violation, the curvature goes from a

maximum to a mininun as r goes from zero to A.

k(r) T -mk-_ rn

Mhe path slope is th•,! integral oi this equation.

s (r) -s k + kilr - 1 k-in) r 2 (H-16)

M1e violatiujo 
is

3v (1 srsmax Nnax ffmr 0117)

1I~~~~ 1. ~ ~ c~i4u. ~2' ~' ~t~W"
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The extreme value occurs for
as

0 v R 1k k.-- •max A (maxmn r(-s

or 
kma

Il1us, the bound on the maximum-slope violation is
2

S max (H-20)max -kma min

Similarly, a bound on the minimum-slcpe violation magnitude can

be computed k 2
= mm 112]

" Smin 2 x- m inun

vu I~rl
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